AP1152

出力電流300mA,高PSRR,低出力ノイズ LDOレギュレータ
出力電圧固定タイプ

1. 概要

AP1152は、シリコン・モノリシック・バイポーラ構造の集積回路で、出力電流300mAを安定に供給できるOn/Offコントロール付低飽和レギュレータICです。出力電圧は高精度にトリミングされ、1.3Vより9.5Vの間で0.1Vステップで設定できます。このため使用されるセットに最適な電圧を選択することができます。出力側のコンデンサは、出力電圧が2.5V以上では0.1μFの小型セラミックコンデンサが使用可能です。さらに、過電流センサ回路、過熱保護回路を内蔵しています。パッケージは、SOT89-5 (AP1152ADUXX)の他に放熱性の高いExposed Pad付き小型・低背パッケージ PLP1822-6 (AP1152AEUXX) を採用しているため、セットの小型化にも貢献します。

2. 特長

- 動作周囲温度: -40～85℃
- 入力電圧: 2.1～14.5V
- 出力電流: 300mA
- 出力電圧の設定可能範囲: 1.3～9.5V
- 出力電圧精度: ±1.5% or ±50mV
- 入出力電圧差: 105mV at I_{OUT}=100mA
- リップルリジェクション: 80dB at 1kHz
- 低ノイズアプリケーション対応可
- 小型セラミックコンデンサ使用可能
- 出力On/Offコントロール付(High active)
- 過電流保護機能、過熱保護機能内蔵
- パッケージ:
 - AP1152ADUXX: SOT89-5
 - AP1152AEUXX: PLP1822-6 (Exposed Pad付き)

3. 用途

- RF電源
- 低ノイズの撮像機器
- 高速/高精度のA-D、D-A、オペアンプ
- 高精度電源
- スイッチング電源のポストレギュレーター
- PLL、VCO、ミキサ、LNA
- デジタルカメラ
- オーディオ機器、計測機器
- 車載インフォテイメント
4. 目次

<table>
<thead>
<tr>
<th>章目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>概要</td>
</tr>
<tr>
<td>2.</td>
<td>特長</td>
</tr>
<tr>
<td>3.</td>
<td>用途</td>
</tr>
<tr>
<td>4.</td>
<td>目次</td>
</tr>
<tr>
<td>5.</td>
<td>ブロック図</td>
</tr>
<tr>
<td>6.</td>
<td>オーダリングガイド</td>
</tr>
<tr>
<td>7.</td>
<td>ピン配置と機能説明</td>
</tr>
<tr>
<td></td>
<td>■ ピン配置</td>
</tr>
<tr>
<td></td>
<td>■ 機能説明</td>
</tr>
<tr>
<td>8.</td>
<td>絶対最大定格</td>
</tr>
<tr>
<td>9.</td>
<td>推奨動作条件</td>
</tr>
<tr>
<td>10.</td>
<td>電気的特性</td>
</tr>
<tr>
<td></td>
<td>■ 電気的特性 (Ta=Tj=25°C)</td>
</tr>
<tr>
<td></td>
<td>■ 電気的特性 (Ta=40~85°C)</td>
</tr>
<tr>
<td>11.</td>
<td>動作説明</td>
</tr>
<tr>
<td>11.1</td>
<td>DC特性</td>
</tr>
<tr>
<td>11.2</td>
<td>DC温度特性</td>
</tr>
<tr>
<td>11.3</td>
<td>AC特性</td>
</tr>
<tr>
<td>11.4</td>
<td>安定動作に関わって</td>
</tr>
<tr>
<td>11.5</td>
<td>On/Offコントロール</td>
</tr>
<tr>
<td>11.6</td>
<td>ノイズパス端子</td>
</tr>
<tr>
<td>11.7</td>
<td>出力端子 (VOUT) - GND</td>
</tr>
<tr>
<td></td>
<td>短絡評価時の注意点</td>
</tr>
<tr>
<td>11.8</td>
<td>パッケージの熱抵抗と許容損失</td>
</tr>
<tr>
<td>12.</td>
<td>用語の定義</td>
</tr>
<tr>
<td>13.</td>
<td>外部接続回路例</td>
</tr>
<tr>
<td></td>
<td>□ 外部接続回路例</td>
</tr>
<tr>
<td></td>
<td>□ レイアウト例</td>
</tr>
<tr>
<td>14.</td>
<td>パッケージ</td>
</tr>
<tr>
<td></td>
<td>□ 外形寸法図、マーキング</td>
</tr>
<tr>
<td></td>
<td>・ SOT89-5</td>
</tr>
<tr>
<td></td>
<td>・ PLP1822-6</td>
</tr>
<tr>
<td>15.</td>
<td>改訂履歴</td>
</tr>
<tr>
<td>16.</td>
<td>重要な注意事項</td>
</tr>
</tbody>
</table>
5. ブロック図

Figure 1. ブロック図
6. オーダリングガイド

<table>
<thead>
<tr>
<th></th>
<th>AP1152ADUXX</th>
<th>Ta = -40 to 85°C</th>
<th>SOT89-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP1152AEUXX</td>
<td>Ta = -40 to 85°C</td>
<td>PLP1822-6</td>
</tr>
</tbody>
</table>

・出力電圧コード
出力電圧コードについては、Table 1にて確認ください。Table 1の出力電圧ラインナップ以外のご検討については弊社販売代理店までご確認願います。

AP1152ADUXX

Output voltage code

AP1152AEUXX

Output voltage code

Table 1. 出力電圧コード

<table>
<thead>
<tr>
<th>XX</th>
<th>VOUT</th>
<th>XX</th>
<th>VOUT</th>
<th>XX</th>
<th>VOUT</th>
<th>XX</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1.8</td>
<td>25</td>
<td>2.5</td>
<td>30</td>
<td>3.3</td>
<td>40</td>
<td>4.0</td>
</tr>
<tr>
<td>28</td>
<td>2.8</td>
<td>33</td>
<td>3.3</td>
<td>45</td>
<td>4.5</td>
<td>50</td>
<td>5.0</td>
</tr>
</tbody>
</table>
7. ピン配置と機能説明

■ ピン配置

<table>
<thead>
<tr>
<th>SOT89-5</th>
<th>PLP1822-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP 1</td>
<td>1</td>
</tr>
<tr>
<td>GND 2</td>
<td>5</td>
</tr>
<tr>
<td>VCONT 3</td>
<td>4</td>
</tr>
<tr>
<td>VOUT 5</td>
<td>VOUT 4</td>
</tr>
</tbody>
</table>

(Top View)

■ 機能説明

<table>
<thead>
<tr>
<th>端子番号</th>
<th>名称</th>
<th>等価回路</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>[回路図]</td>
<td>ノイズパス端子容量をGND端子間に接続して下さい。</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
<td>GND接地端子</td>
</tr>
<tr>
<td>3</td>
<td>VCONT</td>
<td>[回路図]</td>
<td>On/Offコントロール端子プルダウン抵抗(500kΩ)を内蔵しています。</td>
</tr>
<tr>
<td>4</td>
<td>VIN</td>
<td></td>
<td>入力端子</td>
</tr>
<tr>
<td>端子番号</td>
<td>名称</td>
<td>等価回路</td>
<td>説明</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>SOT89-5</td>
<td>PLP1822-6</td>
<td>V_{OUT}</td>
<td>出力端子</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>V_{OUT}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[电路图]</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>N.C.</td>
<td>ノンコネクション</td>
</tr>
<tr>
<td>-</td>
<td>Exposed Pad</td>
<td>-</td>
<td>GND設置端子、放熱用パッド</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>放熱用パッドは必ずGNDに接続してください。</td>
</tr>
</tbody>
</table>
8. 絶対最大定格

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源電圧</td>
<td>(V_{CC\text{MAX}})</td>
<td>-0.4</td>
<td>16</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>出力端子逆バイアス</td>
<td>(V_{REV\text{MAX}})</td>
<td>-0.4</td>
<td>6</td>
<td>V</td>
<td>(\text{Vout} \leq 2.0\text{V})</td>
</tr>
<tr>
<td>Np端子電圧</td>
<td>(V_{NP\text{MAX}})</td>
<td>-0.4</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vcont端子電圧</td>
<td>(V_{CONT\text{MAX}})</td>
<td>-0.4</td>
<td>16</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>動作時最大接合温度</td>
<td>(T_j)</td>
<td>-</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>保存温度範囲</td>
<td>(T_{STG})</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>許容消費電力</td>
<td>SOT89-5</td>
<td>-</td>
<td>900</td>
<td>mW</td>
<td>(Note 1)</td>
</tr>
<tr>
<td></td>
<td>PLP1822-6</td>
<td>-</td>
<td>1500</td>
<td>mW</td>
<td>(Note 1)</td>
</tr>
</tbody>
</table>

Note 1. JEDEC51-3 準拠4層基板使用時のパッケージの熱抵抗(\(\theta_{JA}\))

- SOT89-5 \(\theta_{JA} = 138^\circ\text{C/W}\)
- PLP1822-6 \(\theta_{JA} = 83^\circ\text{C/W}\)

注意: この値を超えた条件で使用した場合、デバイスを破壊することがあります。また通常の動作は保証されません。

Figure 2. ディレーティングカーブ

9. 推奨動作条件

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作周囲温度</td>
<td>(T_a)</td>
<td>-40</td>
<td>-</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>動作電圧範囲</td>
<td>(V_{OP})</td>
<td>2.1</td>
<td>-</td>
<td>14.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>出力電圧範囲</td>
<td>(V_{OUT})</td>
<td>1.3</td>
<td>-</td>
<td>9.5</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
10. 電気的特性

■ 電気的特性（Ta=Tj=25℃）
限界値の記載されている項目は Ta=Tj=25℃ に対して適用されます。

\[(V_{IN}=V_{OUT}(typ)+1V, V_{CONT}=1.8V, Ta=Tj=25℃)\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>出力電圧</td>
<td>(V_{OUT})</td>
<td>(I_{OUT}=5mA)</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>入力安定度</td>
<td>LinReg</td>
<td>(\Delta V_{IN} = 5V)</td>
<td>-</td>
<td>0.0</td>
<td>6.0</td>
<td>mV</td>
</tr>
<tr>
<td>負荷安定度</td>
<td>LoaReg</td>
<td>(I_{OUT}=5mA)~100mA</td>
<td>-</td>
<td>105</td>
<td>170</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=5mA)~200mA</td>
<td>-</td>
<td>170</td>
<td>270</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=5mA)~300mA</td>
<td>-</td>
<td>235</td>
<td>370</td>
<td>mV</td>
</tr>
<tr>
<td>入出力間電圧降下（Note 2）</td>
<td>(V_{DROP})</td>
<td>(I_{OUT}=100mA)</td>
<td>-</td>
<td>105</td>
<td>170</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=200mA)</td>
<td>-</td>
<td>170</td>
<td>270</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=270mA) ((2.1V \leq V_{OUT} \leq 2.3V))</td>
<td>-</td>
<td>235</td>
<td>370</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=300mA) ((2.4V \leq V_{OUT}))</td>
<td>-</td>
<td>235</td>
<td>370</td>
<td>mV</td>
</tr>
<tr>
<td>最大出力電流（Note 3）</td>
<td>(I_{OUTMAX})</td>
<td>(V_{OUT}=V_{OUT})(typ)×0.9</td>
<td>380</td>
<td>480</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>出力短絡電流（Note 3）</td>
<td>(I_{SHORT})</td>
<td>(I_{OUT}=0mA)</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>消費電流</td>
<td>(I_{Q})</td>
<td>(I_{OUT}=0mA)</td>
<td>-</td>
<td>65</td>
<td>90</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>スタンバイ電流</td>
<td>(I_{STANDBY})</td>
<td>(V_{CONT}=0V)</td>
<td>-</td>
<td>0.0</td>
<td>0.1</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>無効電流</td>
<td>(I_{GND})</td>
<td>(I_{OUT}=100mA)</td>
<td>-</td>
<td>1.8</td>
<td>3.0</td>
<td>mA</td>
</tr>
<tr>
<td>(V_{CONT})端子電流</td>
<td>(I_{CONT})</td>
<td>(V_{CONT}=1.8V)</td>
<td>-</td>
<td>5.0</td>
<td>10.0</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(V_{CONT})端子電圧</td>
<td>(V_{CONT})</td>
<td>(V_{OUT}) ON state</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>(V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{OUT}) OFF state</td>
<td>-</td>
<td>-</td>
<td>0.35</td>
<td>(V)</td>
</tr>
</tbody>
</table>

Note 2. 出力電圧 2.0V以下の製品は入出力間電圧降下項目の規格は有りません。
Note 3. 最大電流値は許容消費電力に制限されます。
Table 2. 出力電圧及び負荷安定度

<table>
<thead>
<tr>
<th>品名</th>
<th>出力電圧</th>
<th>負荷安定度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td>I(_{\text{OUT}}) = 100mA</td>
<td>V</td>
<td>mV</td>
</tr>
<tr>
<td>I(_{\text{OUT}}) = 200mA</td>
<td>V</td>
<td>mV</td>
</tr>
<tr>
<td>I(_{\text{OUT}}) = 300mA</td>
<td>V</td>
<td>mV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>品名</th>
<th>出力電圧</th>
<th>負荷安定度</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1152ADU18</td>
<td>1.750</td>
<td>11</td>
</tr>
<tr>
<td>AP1152AEU18</td>
<td>1.800</td>
<td>23</td>
</tr>
<tr>
<td>AP1152ADU25</td>
<td>2.450</td>
<td>12</td>
</tr>
<tr>
<td>AP1152AEU25</td>
<td>2.500</td>
<td>24</td>
</tr>
<tr>
<td>AP1152ADU28</td>
<td>2.750</td>
<td>12</td>
</tr>
<tr>
<td>AP1152AEU28</td>
<td>2.800</td>
<td>25</td>
</tr>
<tr>
<td>AP1152ADU30</td>
<td>2.950</td>
<td>12</td>
</tr>
<tr>
<td>AP1152AEU30</td>
<td>3.000</td>
<td>26</td>
</tr>
<tr>
<td>AP1152ADU33</td>
<td>3.250</td>
<td>13</td>
</tr>
<tr>
<td>AP1152AEU33</td>
<td>3.300</td>
<td>26</td>
</tr>
<tr>
<td>AP1152ADU40</td>
<td>3.940</td>
<td>13</td>
</tr>
<tr>
<td>AP1152AEU40</td>
<td>4.000</td>
<td>28</td>
</tr>
<tr>
<td>AP1152ADU45</td>
<td>4.432</td>
<td>14</td>
</tr>
<tr>
<td>AP1152AEU45</td>
<td>4.500</td>
<td>29</td>
</tr>
<tr>
<td>AP1152ADU50</td>
<td>4.925</td>
<td>14</td>
</tr>
<tr>
<td>AP1152AEU50</td>
<td>5.000</td>
<td>31</td>
</tr>
</tbody>
</table>
■ 電気的特性 (Ta=-40~85°C)
限界値の記載されている項目はTa= -40~85°C に対して適用されます。

\[(V_{IN}=V_{OUT}(typ)+1V,V_{CONT}=1.8V,Ta=-40 \sim 85°C)\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>出力電圧</td>
<td>(V_{OUT})</td>
<td>(I_{OUT}=5mA) (Table 3)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>入力安定度</td>
<td>LinReg</td>
<td>(\Delta V_{IN}=5V)</td>
<td>-</td>
<td>0.0</td>
<td>8.0</td>
<td>mV</td>
</tr>
<tr>
<td>負荷安定度</td>
<td>LoaReg</td>
<td>(I_{OUT}=5mA\sim100mA)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=5mA\sim200mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=5mA\sim300mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>入出力間電圧降下 (Note 4)</td>
<td>(V_{DROP})</td>
<td>(I_{OUT}=100mA) (2.2V (\leq) (V_{OUT}))</td>
<td>-</td>
<td>105</td>
<td>200</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=200mA) (2.2V (\leq) (V_{OUT}))</td>
<td>-</td>
<td>170</td>
<td>320</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{OUT}=300mA) (2.4V (\leq) (V_{OUT}))</td>
<td>-</td>
<td>235</td>
<td>440</td>
<td>mV</td>
</tr>
<tr>
<td>最大出力電流 (Note 5)</td>
<td>(I_{OUT\ MAX})</td>
<td>(V_{OUT}=V_{OUT}(typ)\times0.9)</td>
<td>340</td>
<td>480</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>出力短絡電流 (Note 5)</td>
<td>(I_{SHORT})</td>
<td>(I_{OUT}=0mA)</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>消費電流</td>
<td>(I_{Q})</td>
<td>(I_{OUT}=0mA)</td>
<td>-</td>
<td>65</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>スタンバイ電流</td>
<td>(I_{STANDBY})</td>
<td>(V_{CONT}=0V)</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>μA</td>
</tr>
<tr>
<td>無効電流</td>
<td>(I_{GND})</td>
<td>(I_{OUT}=100mA)</td>
<td>-</td>
<td>1.8</td>
<td>3.6</td>
<td>mA</td>
</tr>
<tr>
<td>(V_{CONT}) 端子電流</td>
<td>(I_{CONT})</td>
<td>(V_{CONT}=1.8V)</td>
<td>-</td>
<td>5.0</td>
<td>12.0</td>
<td>μA</td>
</tr>
<tr>
<td>(V_{CONT}) 端子電圧</td>
<td>(V_{CONT})</td>
<td>(V_{OUT}) ON state</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{OUT}) OFF state</td>
<td>-</td>
<td>-</td>
<td>0.35</td>
<td>V</td>
</tr>
</tbody>
</table>

Note 4. 出力電圧 2.1V以下の製品は入出力間電圧降下项目的規格は有りません。
Note 5. 最大電流値は許容消費電力に制限されます。
Table 3. 出力電圧及び負荷安定度

<table>
<thead>
<tr>
<th>品名</th>
<th>出力電圧</th>
<th>負荷安定度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>AP1152ADU18 AP1152AEU18</td>
<td>1.720</td>
<td>1.800</td>
</tr>
<tr>
<td>AP1152ADU25 AP1152AEU25</td>
<td>2.420</td>
<td>2.500</td>
</tr>
<tr>
<td>AP1152ADU28 AP1152AEU28</td>
<td>2.720</td>
<td>2.800</td>
</tr>
<tr>
<td>AP1152ADU30 AP1152AEU30</td>
<td>2.920</td>
<td>3.000</td>
</tr>
<tr>
<td>AP1152ADU33 AP1152AEU33</td>
<td>3.217</td>
<td>3.300</td>
</tr>
<tr>
<td>AP1152ADU40 AP1152AEU40</td>
<td>3.900</td>
<td>4.000</td>
</tr>
<tr>
<td>AP1152ADU45 AP1152AEU45</td>
<td>4.387</td>
<td>4.500</td>
</tr>
<tr>
<td>AP1152ADU50 AP1152AEU50</td>
<td>4.875</td>
<td>5.000</td>
</tr>
</tbody>
</table>
11. 動作説明

11.1 DC特性

- Line Regulation

- Load Regulation

- V_IN vs. V_OUT Regulation Point

- Dropout Voltage

- 短絡電流

- 逆バイアス電圧 vs. 電流
コントロール電圧 vs. 電流

Off 時無効電流

無効電流
11.2 DC温度特性

■ 最大出力電流

![最大出力電流グラフ](image1)

- \(V_{\text{OUT}} = V_{\text{OUT,type}} \times 0.9 \)

■ 無効電流

![無効電流グラフ](image2)

- \(I_{\text{OUT}}(\text{mA}) \)
- \(I_{\text{GND}}(\text{mA}) \)
- \(I_o=300\text{mA} \)
- \(I_o=200\text{mA} \)
- \(I_o=150\text{mA} \)
- \(I_o=100\text{mA} \)
- \(I_o=50\text{mA} \)

■ 入出力電圧差

![入出力電圧差グラフ](image3)

- \(V_{\text{CONT}}=4.0\text{V} \)
- \(V_{\text{CONT}}=3.0\text{V} \)
- \(V_{\text{CONT}}=2.0\text{V} \)
- \(V_{\text{CONT}}=1.8\text{V} \)

■ コントロール端子電流

![コントロール端子電流グラフ](image4)

- \(V_{\text{CONT}}(\text{ONpoint}) \)
- \(V_{\text{CONT}}(\text{OFFpoint}) \)

■ On/Off電圧

![On/Off電圧グラフ](image5)
11.3 AC特性

・Ripple Rejection
リップルリジェクション特性は出力側に接続されるコンデンサの特性、容量値に依存します。また出力電圧設定値によって特性が異なります。50kHz以上のRR特性については出力側のコンデンサとPCBで大きく変わりますので、必要に応じて動作状態での確認をお願い致します。

■ MLCC vs. Tantal : C_L=0.22uF

■ MLCC vs. Tantal : C_L=1.0uF

■ Tantal : C_L=0.22uF, 10uF

■ Ripple Rejection vs. C_{NP}

■ Ripple Rejection vs. I_{OUT}

測定条件(定数指定の無い場合)

\[V_{IN}=5.0V \ (V_{IN}=V_{OUT,TYP}+2V) \]
\[V_{OUT}=3.0V \]
\[I_{OUT}=30mA \]
\[V_{R}=500mV_{P-P} \]
\[f=100Hz \ to \ 1MHz \]
\[C_{NP}=0.1\mu F \]
Output Noise
低ノイズを要求される時にはCLを大きくするよりもCNPを大きくする方が効果的です。ノイズ量は高い出力電圧ほど多くなります。

- Output Noise vs. Noise Pass Capacitance
 \(I_{OUT} = 30 \text{mA} \)

- Output Noise vs. Output Voltage
 \(I_{OUT} = 30 \text{mA}, \ C_{NP} = 10000 \text{pF}, \ C_{L} = 0.22 \mu\text{F}(\text{MLCC}) \)

- Noise vs. Output Current
 \(C_{L} = \text{Tantal}, \ C_{NP} = 10000 \text{pF} \)

- Noise vs. Output Current
 \(C_{L} = \text{MLCC}, \ C_{NP} = 10000 \text{pF} \)

- Output Noise Level(1/f) vs. Frequency
 \(I_{OUT} = 10 \text{mA}, \ C_{IN} = 10 \mu\text{F}, \ C_{L} = 0.22 \mu\text{F}(\text{MLCC}) \)
On/Off Transient
立ち上がり時間はC_L、C_{NP}が大きいと遅くなります。立ち上がり時間はC_L、C_{NP}に依存し、立ち下り時間はC_Lに依存します。

- Parameter: $C_L=0.22 \mu F, 1.0 \mu F, 2.2 \mu F$
 Fixed: $C_{NP}=0.001 \mu F$

測定条件(定数指定の無い場合)
$V_{CONT}=0V \leftrightarrow 2.0V @ f=100Hz$
$I_{OUT}=30mA$
$C_{IN}=1.0 \mu F$
$C_L=2.2 \mu F$
$C_{NP}=0.001 \mu F$

- Parameter: $C_L=0.22 \mu F, 1.0 \mu F, 2.2 \mu F$
 Fixed: $C_{NP}=0.01 \mu F$

- Parameter: $C_{NP}=0.001 \mu F, 0.01 \mu F, 0.1 \mu F$
 Fixed: $C_L=1.0 \mu F$
・Load Transient
負荷電流を多少流しておくことで負荷変動を改善できます。
速く大きな電流変化がある時、負荷側コンデンサを大きくしてください。電圧変動を小さく出来ます。

- Parameter: $C_L = 0.22\mu F, 1.0\mu F, 2.2\mu F$
 Fixed: $C_{NP} = 0.01\mu F$

測定条件(定数指定の無い場合)

$V_{CONT} = 0V \leftrightarrow 1.8V @ f = 100Hz$
$I_{OUT} = 30mA$
$C_{IN} = 1.0\mu F$
$C_L = 2.2\mu F$
$C_{NP} = 0.01\mu F$

又、負荷電流を多少流しておくことで負荷変動を大きく改善できます。

$I_{OUT} = 0mA \leftrightarrow 30mA, 3mA \leftrightarrow 30mA,$

速くそして大きな電流変化がある時、負荷側コンデンサを大きくしてください。さらに少しの電流を流してください。電圧変動は小さく出来ます。
11.4 安定動作に関して
リニア・レギュレータは、レギュレータのループ安定性を維持するために、入力コンデンサと出力コンデンサを必要とします。

・入力コンデンサ(CIN)
入力コンデンサは電池が消耗し電源インピーダンスが増加した時、あるいは電源までの引き回しラインが長い場合に必要です。このコンデンサは複数のレギュレータICを使用しても1個で十分である場合あるいはIC毎に必要な場合もあります。一概に言えません。実装状態で確認をお願いいたします。アプリケーションの推奨値はCIN=1.0uFです。

・出力コンデンサ(CL)
AP1152は出力側に0.1μF(Vout≧2.1V)の出力側コンデンサ(CL)で安定動作します。全使用温度範囲においてCLが0.1μF以上であればESRを考慮せずに、セラミックコンデンサだけでなくタンタルコンデンサも使用できます。但し、容量部品にはばらつきが有りますので、出来るだけ容量は大きくしてご使用下さい。大きい容量値ほど出力ノイズとリップルノイズは減少し、更に、さらに出力側負荷変動に対する応答性も向上します。容量を大きくすることでICが破損することはありません。又、低出力電圧品は発振し易くなりますので、CL容量を大きくするかタンタルコンデンサをご使用ください。タンタルコンデンサのほうがより小さい値で同じ安定性を得られます。
これはタンタルコンデンサのESRがダンピング抵抗として働き、ICがより安定な動作をすると考えられます。
アプリケーションの推奨値はCL=1.0uFです。

Figure 3は少電流域を除き0.1uFのセラミックコンデンサで安定動作する事を意味します。低電圧及び少電流領域では容量を大きくしなければ安定動作しません。使用電圧、使用電流、により最適な出力コンデンサを選定してください。出力側コンデンサ(CL)は大きいほど安定動作します。安定動作領域は広がります。出来るだけ大きい容量をご使用ください。150mA以上は記載されていませんが150mAと同等以上の安定動作となります。
Note 6. 評価に使用したコンデンサ製品

京セラ製 CM05B104K10AB、CM05B224K10AB、CM105B104K16A、CM105B224K16A、CM21B225K10A

村田製 GRM36B104K10、GRM42B104K10 GRM39B104K25、GRM39B224K10、GRM39B105K6.3 等

・セラミックコンデンサの電圧、温度特性例
一般的にセラミックコンデンサには温度特性、電圧特性があります。使用される電圧、温度を考慮し部品の選定をお願いします。 B特性をお勧めいたします。

■ 容量値 vs. バイアス電圧特性

■ 容量値 vs. 温度特性
11.5 On/Offコントロール
レギュレータ後の回路が非動作時に、レギュレータはOffにしてください。レギュレータの出力にハイサイドSWを使用せずにレギュレータのOn／Offコントロールの使用をお勧めします。高精度な出力電圧と低ドロップ電圧を得られます。電力損失の少ない設計ができます。V_{CONT}端子電流が少ない為、CMOSロジックで直接コントロール可能です。V_{CONT}端子には500kΩのプルダウン抵抗を内蔵しています。

<table>
<thead>
<tr>
<th>コントロール端子電圧 (V_{CONT})</th>
<th>動作状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{\text{CONT}} > 1.8$V</td>
<td>ON</td>
</tr>
<tr>
<td>$V_{\text{CONT}} < 0.35$V</td>
<td>OFF</td>
</tr>
</tbody>
</table>

AP1152を並列接続してON/OFFコントロール制御する場合、低電圧側IC(AP1150ADS20)のパワーロスが大きいため、過熱する心配が有ります。必要に応じ、Figure 4のように抵抗(R)を使用し電力損失の低減をして下さい。

Figure 4. 並列接続時のOn/Offコントロール制御

11.6 ノイズパス端子
ノイズとリップルリジェクション特性はNP端子容量に依存します。C_{NP}の容量が大きいほど低周波域のリップルリジェクション特性が良くなります。標準値は$C_{\text{NP}}=0.1\mu\text{F}$です。出力ノイズやリップルリジェクションが重要な設計ではC_{NP}を大きくして下さい。コンデンサを大きくしてもICは壊れません。NP端子容量によりOn/Offの切り替えスピードが変わります。切り替えスピードは容量が大きいと遅くなります。

11.7 出力端子(VOUT) - GND 短絡評価時の注意点
出力端子に付くCL（C成分）と短絡線（L成分）による共振現象で、出力端子がマイナス電位と成ります。出力端子がマイナス側に入るとIC内で寄生トランジスタが動作し、最悪の場合IC内でラッチアップ現象が起きる為パッケージの焼損（白煙）や破損に至ります。

上記共振現象はコンデンサのESR値が小さいセラミックコンデンサ等に於いて顕著に現れます。この現象の対策として、短絡線と直列に2Ω以上の抵抗を接続して短絡する事で共振現象の低減が行えます。これによりIC内でのラッチアップ現象が防止出来ます。

ESRの大きいタンタル及び電解コンデンサでは、一般的にESR値が2Ω以上有り共振現象の影響が少なくなります。また、お客様様上的制約等で上記のような対策を行えない場合は、GND端子と出力端子の間にショットキーダイオードを挿入してください。これによりIC内部の寄生トランジスタが動作しなくなります。結果、寄生トランジスタが動作しないのでラッチアップを回避できます。
11.8 パッケージの熱抵抗と許容損失

・PCB実装時の熱抵抗の算出
動作時のチップ接合温度は、次式で示されます。

\[T_j = \theta_{JA} \times P_D + 25 \]

AP1150Aの接合部温度\(T_j\)は、過熱保護回路により約150°Cで制限されています。\(P_D\)は過熱保護回路を動作させた時の値です。周囲温度を25°Cとすると熱抵抗(\(\theta_{JA}\))は下記の式で求めることができます。

\[150 = \theta_{JA} \times P_D + 25 \]
\[\theta_{JA} \times P_D + 25 = 150 \]
\[\theta_{JA} \times P_D = 125 \]
\[\theta_{JA} = \frac{125}{P_D} \text{（℃/W）} \]

・簡単に\(P_D\)を求める方法
PCBにICを実装してください。\(P_D\)はICの出力側を短絡した時の\(V_{IN} \times I_{IN}\)と成ります。出力端子をGNDと短絡して入力電圧を徐々に上げて行き入力電流を測定します。入力電圧を10Vまで徐々に上げます。初期の入力電流値は瞬間最大出力電流値となりますが、チップの温度上昇により徐々に減少し、最終的には熱的平衡状態（自然空冷）となります。一定に成った時の入力電流値と入力電圧値を用いて計算します。

\[P_D (\text{mW}) \approx V_{IN}(\text{V}) \times I_{IN}(\text{mA}) \]

・最高温度時の最大使用可能電流
最高動作温度時に使用可能電流は、Figure 5のグラフで求める事が出来ます。Figure 5のグラフから求められた\(DPD\)値より、最高温度時の最大使用可能電流は次式で求めることが出来ます。

\[I_{OUT} \approx \frac{DPD}{(V_{IN,MAX}\text{−}V_{OUT})} \]

![Figure 5. PDを求める手順](image)

1: \(P_D\)を求める（出力短絡時の\(V_{IN}\times I_{IN}\)）
2: \(P_D\)を25°Cの線上にプロットする。
3: \(P_D\)と150°Cの線を直線で結ぶ。（実線）
4: 設計上の使用最高温度の点より（例えば75°Cとする）垂直に線を延ばす。（破線）
5: ディレーティングカーブ（実線）と破線の交点を左延ばし\(Pd\)の値を読む（\(DPD\)とする）
6: \(DPD\times(V_{IN,MAX}\text{−}V_{OUT})=I_{OUT}\) at 75°C
12. 用語の定義

各特性の項目は接合部温度(Tj)の影響が無いように短時間で測定されます。

・出力電圧(VOUT)
 入力電圧(VIN)をVOUT(typ) +1V、IOUT=5mAとし、この時に得られた出力電圧です。

・出力電流(IOUT)
 通常使用できる出力電流。過熱保護が動作しない範囲とします。

・最大出力電流(IOUT-MAX)
 入力電圧をVOUT(typ) +1Vとし、この時に得られた出力電圧が、負荷電流(IOUT)を流すことにより、90%に低下したときの出力電流です。

・入出力間電圧降下(VDROP)
 入力電圧の低下に伴って、回路が安定動作停止したときの、入出力電圧差です。入力電圧を、標準時より徐々に低下させていき、出力電圧が標準時より100mV低下したときの、入力と出力の電圧差です。

・入力安定度(Line Regulation : LinReg)
 入力電圧を変化させた時の出力電圧変動値です。

・負荷安定度(Load Regulation : LoaReg)
 入力電圧をVOUT(typ) +1Vとし、負荷電流を変化させた時の出力電圧変動値です。

・リップル除去比(Ripple Rejection : R.R)
 入力電圧を、VOUT(typ) +1.5Vとします。これに交流波形を重畳させ、この入力波形と出力に現れた出力波形との電圧比です。

・スタンバイ電流(IStanby)
 コントロール端子電圧で出力電圧をOFFモードとした時に流れる入力電流です。

・過電流保護(Over Current Protection)
 出力を誤ってGNDに接続した場合など、過大な電流が流れようとした時、出力電流を制限しICを保護する機能です。

・過熱保護(Thermal Protection)
 レギュレータの電力損失が多い時、許容消費電力を超えない様制限する機能です。チップ温度が約150℃に到達すると出力はOFFになります。しかし、チップの温度が低下すると、再び出力がONになります。
13. 外部接続回路例

外部接続回路例

<table>
<thead>
<tr>
<th>AP1152ADUX (SOT89-5)</th>
<th>AP1152AEUX (PLP1822-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin</td>
<td>Vout</td>
</tr>
<tr>
<td>Cin</td>
<td>Cin</td>
</tr>
<tr>
<td>Vcont</td>
<td>GND</td>
</tr>
<tr>
<td>Vin</td>
<td>Vout</td>
</tr>
<tr>
<td>Vcont</td>
<td>GND</td>
</tr>
<tr>
<td>Cp</td>
<td>GND</td>
</tr>
</tbody>
</table>

Figure 6. 外部接続回路例

Table 5. 推奨外付け部品例

<table>
<thead>
<tr>
<th>Parts</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>UNIT</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_IN</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>C_NP</td>
<td>-</td>
<td>0.001</td>
<td>-</td>
<td>μF</td>
<td></td>
</tr>
</tbody>
</table>

Note 7. 上記は推奨例です。お使いの際には事前にお客様のボードでご確認の上で至適な値を適用下

レイアウト例

<table>
<thead>
<tr>
<th>AP1152ADUX (SOT89-5)</th>
<th>AP1152AEUX (PLP1822-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>VOUT</td>
</tr>
<tr>
<td>C_IN</td>
<td>CL</td>
</tr>
<tr>
<td>VCONT</td>
<td>GND</td>
</tr>
<tr>
<td>C_IN</td>
<td>CL</td>
</tr>
</tbody>
</table>

Figure 7. レイアウトパターン例

① VIN端子とGND端子に可能な限り近くに入力コンデンサC_INを配置してください。
② VOUT端子とGND端子に可能な限り近くに出力コンデンサCLを配置してください。
③ PCBの配線は、GND領域を強化するようにしてください。
④ PLP1822-6のExposed-PadはICのグランドと共有着っています。必ずPCBのグランドへ接続してください。ビア(放熱穴)は、PCBの各層への放熱に効果的です。
14. パッケージ

■ 外形寸法図、マーキング
・ SOT89-5

[Diagram of SOT89-5 package]

Unit: mm
General tolerance: ±0.2

・ PLP1822-6

[Diagram of PLP1822-6 package]

Unit: mm

(1) 1pin Indication
(2) Market No. (XX:Output Voltage code)
(3) Year code (last 1 digit)
(4) Week code
(5) Management code
<table>
<thead>
<tr>
<th>Date (YY/MM/DD)</th>
<th>Revision</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/10/29</td>
<td>00</td>
<td>-</td>
<td>初版</td>
</tr>
</tbody>
</table>
| 14/12/05 | 01 | 24 | 外形横幅寸法公差変更4.5±0.2→4.5±0.1
外形縦幅寸法公差変更2.5±0.2→2.5±0.1(ピン長さ含まず)
外形縦幅寸法公差変更4.5+0.5/-0.3→4.3+0.15/-0.15（ピン長さ含む）
外形高さ寸法公差変更1.5±0.2→1.5±0.1
ピン寸法変更1.0→0.9 |
| 17/3/24 | 02 | - | PLP1822-6パッケージ追加に伴い全面改訂 |
重要な注意事項

0. 本書に記載された弊社製品（以下、「本製品」といいます。）、および、本製品の仕様につきましては、本製品改善のために予告なく変更することがあります。従いまして、ご使用を検討の際には、本書に掲載した情報が最新のものであることを弊社営業担当、あるいは弊社特約店営業担当にご確認ください。

1. 本書に記載された情報は、本製品の動作例、応用例を説明するものであり、その使用に際して弊社および第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。お客様の機器設計において当該情報を使用される場合は、お客様の責任において行って頂くとともに、当該情報の使用に起因してお客様または第三者に生じた損害に対し、弊社はその責任を負うものではありません。

2. 本製品は、医療機器、航空宇宙用機器、輸送機器、交通信号機器、燃焼機器、原子力制御用機器、各種安全装置など、その装置・機器の故障や動作不良が、直接または間接を問わず、生命、身体、財産等へ重大な損害を及ぼすことが通常予想されるような極めて高い信頼性を要求される用途に使用されることを意図しておらず、保証もされていません。そのため、別途弊社より書面で許諾された場合を除き、これらの用途に本製品を使用しないでください。万が一、これらの用途に本製品を使用された場合、弊社は、当該使用から生ずる損害等の責任を一切負うものではありません。

3. 弊社は品質、信頼性の向上に努めておりますが、電子製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により、生命、身体、財産等が侵害されることのないよう、お客様の責任において、本製品を搭載されるお客様の製品に必要な安全設計を行うことをお願いします。

4. 本製品および本書記載の技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその軍事用途の目的で使用しないでください。本製品および本書記載の技術情報を輸出または非居住者に提供する場合は、「外国為替及び外国貿易法」その他の適用ある輸出関連法令を遵守し、必要な手続を行ってください。本製品および本書記載の技術情報を国内外の法令および規則により製造、使用、販売を禁止されている機器・システムに使用しないでください。

5. 本製品の環境適合性等の詳細につきましては、製品個別に必ず弊社営業担当までお問合せください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようにご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、弊社は一切の責任を負いかねます。

6. お客様の転売等によりこの注意事項に反して本製品が使用され、その使用から損害等が生じた場合はお客様にて当該損害をご負担または補償して頂きますのでご了承ください。

7. 本書の全部または一部を、弊社の事前の書面による承諾なしに、転載または複製することを禁じます。