CQ-3200は、電流値に比例したアナログ電圧を出力する、磁気式のオープン型電流センサです。高感度の量子井戸構造InAsホール素子を採用しており、直流、交流のいずれも高精度で高速に検出できることが特長です。また磁性体コアを使用しない構造（コアレス構造）を採用することで、超小型化・薄型を実現しています。

2. 特長

□ 小型・薄型表面実装パッケージ(モールド部外形: VSOP-24相当)
□ 絶縁耐圧 3.0kV (AC50/60Hz, 60s)
□ 安全規格 IEC/UL 60950、UL 508の認証取得
□ 高速応答: 0.5μs (typ.)
□ 感度と零電流電圧のばらつき、温度ドリフトが小さい
□ 磁性体を含まず、出力にヒステリシスが存在しない
□ ローノイズ: 1.4mVrms (typ.)
□ 両方向検出タイプ
□ 3.3V単一電源で動作
□ レシオメトリック出力
□ ハロゲンフリー対応
3. 目 次

<table>
<thead>
<tr>
<th>章目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>概 要</td>
</tr>
<tr>
<td>2.</td>
<td>特 長</td>
</tr>
<tr>
<td>3.</td>
<td>目 次</td>
</tr>
<tr>
<td>4.</td>
<td>ブロック図と機能説明</td>
</tr>
<tr>
<td>5.</td>
<td>ピン配置と機能説明</td>
</tr>
<tr>
<td>6.</td>
<td>安全規格</td>
</tr>
<tr>
<td>7.</td>
<td>絶対最大定格</td>
</tr>
<tr>
<td>8.</td>
<td>推奨動作条件</td>
</tr>
<tr>
<td>9.</td>
<td>電気的特性</td>
</tr>
<tr>
<td>10.</td>
<td>各特性の定義</td>
</tr>
<tr>
<td>11.</td>
<td>推奨接続回路例</td>
</tr>
<tr>
<td>12.</td>
<td>パッケージ</td>
</tr>
<tr>
<td>13.</td>
<td>基板レイアウト例</td>
</tr>
<tr>
<td>14.</td>
<td>信頼性試験項目</td>
</tr>
<tr>
<td>15.</td>
<td>お取扱い上の注意</td>
</tr>
<tr>
<td>16.</td>
<td>重要な注意事項</td>
</tr>
</tbody>
</table>
4. ブロック図と機能説明

Figure 1. CQ-3200のブロック図

Table 1. 回路機能説明

<table>
<thead>
<tr>
<th>回路ブロック</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Conductor</td>
<td>被測定電流を印加する導体。</td>
</tr>
<tr>
<td>Hall Sensor</td>
<td>磁束密度を検出するホール素子。</td>
</tr>
<tr>
<td>Amplifier</td>
<td>ホール素子出力電圧の増幅回路。</td>
</tr>
<tr>
<td>Buffer</td>
<td>デバイスに印加される磁束密度に比例した電圧VOUTを出力します。</td>
</tr>
<tr>
<td>Compensation</td>
<td>電流感度、零電流電圧の温度補正回路。</td>
</tr>
<tr>
<td>Bias Unit</td>
<td>ホール素子駆動回路。</td>
</tr>
<tr>
<td>EEPROM Unit</td>
<td>補正パラメータ設定用の不揮発性メモリ。出荷段階で補正済みです。</td>
</tr>
</tbody>
</table>
5. ピン配置と機能説明

Table 2. ピン機能説明

<table>
<thead>
<tr>
<th>No.</th>
<th>ピン名</th>
<th>I/O</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TAB1</td>
<td>-</td>
<td>放熱用端子（基板上でGNDに接続して下さい）</td>
</tr>
<tr>
<td>2</td>
<td>TEST1</td>
<td>-</td>
<td>テスト端子（基板上でGNDに接続して下さい）</td>
</tr>
<tr>
<td>3</td>
<td>VDD</td>
<td>PWR</td>
<td>センサ電源（3.3V）</td>
</tr>
<tr>
<td>4</td>
<td>TEST2</td>
<td>-</td>
<td>テスト端子（基板上でVDDに接続して下さい）</td>
</tr>
<tr>
<td>5</td>
<td>VSS</td>
<td>GND</td>
<td>センサGND（GND）</td>
</tr>
<tr>
<td>6</td>
<td>VOUT</td>
<td>O</td>
<td>センサ出力</td>
</tr>
<tr>
<td>7</td>
<td>TEST3</td>
<td>-</td>
<td>テスト端子（基板上でGNDに接続して下さい）</td>
</tr>
<tr>
<td>8</td>
<td>TAB2</td>
<td>-</td>
<td>放熱用端子（基板上でGNDに接続して下さい）</td>
</tr>
<tr>
<td>9</td>
<td>N</td>
<td>I</td>
<td>被測定電流路端子（－）</td>
</tr>
<tr>
<td>10</td>
<td>P</td>
<td>I</td>
<td>被測定電流路端子（＋）</td>
</tr>
</tbody>
</table>

Figure 2. ピン配置図および標準出力特性
6. 安全規格

7. 絶対最大定格

<table>
<thead>
<tr>
<th>項目</th>
<th>記号</th>
<th>最小</th>
<th>最大</th>
<th>單位</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源電圧</td>
<td>VDD</td>
<td>-0.3</td>
<td>6.5</td>
<td>V</td>
<td>VDD pin</td>
</tr>
<tr>
<td>アナログ出力端子電流</td>
<td>IOUT</td>
<td>-1</td>
<td>1</td>
<td>mA</td>
<td>VOUT pin</td>
</tr>
<tr>
<td>保存温度範囲</td>
<td>Tstg</td>
<td>-40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

注意）絶対最大定格に規定された範囲を超えた条件で使用した場合、デバイスが破壊に至ることがあります。破壊に至らない場合でも、信頼性や寿命に悪影響を及ぼすことがあります。また、通常の動作は保証されません。

8. 推奨動作条件

<table>
<thead>
<tr>
<th>項目</th>
<th>記号</th>
<th>最小</th>
<th>標準</th>
<th>最大</th>
<th>單位</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源電圧</td>
<td>VDD</td>
<td>2.7</td>
<td>3.3</td>
<td>3.63</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>出力電流</td>
<td>IOUT</td>
<td>-0.5</td>
<td>0.5</td>
<td>mA</td>
<td>VOUT pin</td>
<td></td>
</tr>
<tr>
<td>負荷容量</td>
<td>C_L</td>
<td>100</td>
<td>pF</td>
<td></td>
<td>VOUT pin</td>
<td></td>
</tr>
<tr>
<td>被測定最大実効電流</td>
<td>I_RMSmax</td>
<td>-20</td>
<td>20</td>
<td>A</td>
<td>一次導体に定常的に流せる電流値。直流電流値もしくは交流電流の実効値。T_a > 80°CはFigure 3参照</td>
<td></td>
</tr>
<tr>
<td>動作温度範囲</td>
<td>T_a</td>
<td>-40</td>
<td>90</td>
<td>°C</td>
<td>T_a > 80°CはFigure 3参照</td>
<td></td>
</tr>
</tbody>
</table>

注意）推奨動作条件に規定された範囲を超えた条件で使用した場合、電気的特性は保証されません。

冷却あるいは放熱条件により、ディレーティングカーブを改善することが可能です。

条件：Figure 12に示した基板に実装、V_DD = 3.3V

Figure 3. CQ-3200のディレーティングカーブ

冷却あるいは放熱条件により、ディレーティングカーブを改善することが可能です。
9. 電気的特性

<table>
<thead>
<tr>
<th>項目</th>
<th>記号</th>
<th>条件、備考</th>
<th>最小</th>
<th>標準</th>
<th>最大</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>消費電流</td>
<td>(I_{DD})</td>
<td>無負荷</td>
<td>6.2</td>
<td>9.6</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>電流感度</td>
<td>(V_h)</td>
<td>10.1項参照</td>
<td>153.4</td>
<td>155.0</td>
<td>156.6</td>
<td>mV/A</td>
</tr>
<tr>
<td>零電流電圧</td>
<td>(V_{of})</td>
<td>10.1項参照</td>
<td>1.636</td>
<td>1.650</td>
<td>1.664</td>
<td>V</td>
</tr>
<tr>
<td>出力不飽和範囲</td>
<td>(I_{NS})</td>
<td></td>
<td>-8.5</td>
<td>8.5</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>出力飽和電圧</td>
<td>(V_{sat})</td>
<td>(I_{OUT} = -0.5mA)</td>
<td>(V_{DD} - 0.3)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>出力飽和電圧</td>
<td>(V_{sat})</td>
<td>(I_{OUT} = +0.5mA)</td>
<td></td>
<td></td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>直線性</td>
<td>(\rho)</td>
<td>10.2項参照</td>
<td>-0.6</td>
<td>0.6</td>
<td></td>
<td>%F.S.</td>
</tr>
<tr>
<td>立上り応答時間</td>
<td>(t_r)</td>
<td>負荷容量: (C_l = 100pF), 10.5項参照</td>
<td>0.5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>立下り応答時間</td>
<td>(t_f)</td>
<td>負荷容量: (C_l = 100pF), 10.5項参照</td>
<td>0.5</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>周波数特性</td>
<td>(f_T)</td>
<td>出力-3dB低下時の周波数</td>
<td>1000</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>電圧ノイズ電圧</td>
<td>(V_{rms})</td>
<td>100Hz-4MHz積算</td>
<td>1.4</td>
<td></td>
<td></td>
<td>mVrms</td>
</tr>
<tr>
<td>電流感度</td>
<td>(V_{h,\max})</td>
<td>電流感度(T(_a = 35°C))からの変化率</td>
<td>(T_a = -40-90°C)</td>
<td>±0.7</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>零電流感度</td>
<td>(V_{of,\max})</td>
<td>零電流電圧(T(_a = 35°C))からの変化量</td>
<td>(T_a = -40-90°C)</td>
<td>±10</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>電流感度</td>
<td>(V_{h,R})</td>
<td>(V_{DD} = 2.97V-3.63V)</td>
<td>-1.0</td>
<td>1.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>零電流電圧</td>
<td>(V_{of,R})</td>
<td>(V_{DD} = 2.97V-3.63V)</td>
<td>-0.8</td>
<td>0.8</td>
<td></td>
<td>%F.S.</td>
</tr>
<tr>
<td>1次導体抵抗</td>
<td>(R_1)</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>総合精度</td>
<td>(E_{TO})</td>
<td>(T_a = -40-90°C)</td>
<td>±1.3</td>
<td></td>
<td></td>
<td>%F.S.</td>
</tr>
<tr>
<td>異絡耐圧</td>
<td>(V_{INS})</td>
<td>AC 50/60Hz, 60s</td>
<td>3.0</td>
<td></td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td>異絡抵抗</td>
<td>(R_{INS})</td>
<td>DC 1kV</td>
<td>500</td>
<td></td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>空間距離</td>
<td>(d_{CL})</td>
<td>一次～二次間</td>
<td>5.0</td>
<td>5.2</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>沿面距離</td>
<td>(d_{CP})</td>
<td>一次～二次間</td>
<td>5.0</td>
<td>5.2</td>
<td></td>
<td>mm</td>
</tr>
</tbody>
</table>

Note 1. リフロー後あるいは長時間使用後の特性変動は、14. 信頼性試験項目もご参照ください。
Note 2. 量産検査時の電流印加条件は±6A(max), 35msステップです。
Note 3. 一次導体に対し、均等に電流が分布する状態にて量産検査は実施しております。また、電流を印加する基板パターンによって若干値が変化します。詳しくはアプリケーションノートを参照ください。
Note 4. 設計保証値であり、量産検査は実施しません。
Note 5. 総合精度E_TOは次式で計算されます。

\[E_{TO} = \left| 100 \times (V_{h,\text{meas}} - 155) \times 8.5 / (\text{F.S.} \times 1000) \right| + \left| 100 \times (V_{\text{of,meas}} - V_{\text{of,meas}_{35}}) / \text{F.S.} \right| + |\rho_{\text{meas}}| \]

- \(V_{h,\text{meas}} \): 実測した電流感度 [mV/A]
- \(V_{\text{of,meas}} \): 実測した零電流電圧 [V]
- \(V_{\text{of,meas}_{35}} \): \(T_a = 35^\circ C \)で実測した零電流電圧 [V]
- \(\rho_{\text{meas}} \): 実測した直線性 [%F.S.]
- \(\text{F.S.} = V_{\text{sat,H}}(\text{min}) - V_{\text{sat,L}}(\text{max})[V] \)

Note 6. 量産検査環境にて全数試験を実施しております。
10. 各特性の定義

10.1. 電流感度 V_h [mV/A] 及び零電流電圧 V_of [V]

±6Aの間で一次導体電流(I_{IN})を牽引した時のVOUT pin出力(V_{OUT})から、最小二乗法によって求めた近似直線の傾きを電流感度、切片を零電流電圧と定義します。

10.2. 直線性 ρ [%F.S.]

±6Aの間で一次導体電流(I_{IN})を牽引した時のVOUT pin出力(V_{OUT})から最小二乗法によって近似直線を求め、近似直線とVOUT pin出力の間の最大誤差電圧(V_{d})を求めます。フルスケール(F.S.)に対する最大誤差電圧の割合を直線性と定義し、下式で計算されます。

\[\rho = \frac{V_d}{F.S.} \times 100 \]

フルスケール(F.S.)は、F.S. = V_{sat}(min) - V_{sat}(max) [V]と定義します。

![Figure 4. CQ-3200の出力特性](image)

10.3. 電流感度レシオメトリック誤差 V_{h-R} [%] 及び零電流電圧レシオメトリック誤差 V_{of-R} [%F.S.]

本製品はレシオメトリック出力であり、電流感度及び零電流電圧の値は電源電圧(V_{DD})に比例します。レシオメトリック誤差はV_{DD}が3.3VからV_{DD}(2.97V \leq V_{DD} \leq 3.63V)に変化したときの電流感度及び零電流電圧の期待値に対する誤差と定義し、下式で計算されます。

\[V_{h-R} = 100 \times \left(\frac{V_h(V_{DD} = V_{DD})}{V_h(V_{DD} = 3.3V)} - \frac{V_h(V_{DD} = 3.3V)}{3.3} \right) \]

\[V_{of-R} = 100 \times \left(\frac{V_{of}(V_{DD} = V_{DD})}{V_{of}(V_{DD} = 3.3V)} - \frac{V_{of}(V_{DD} = 3.3V)}{3.3} \right) \times \frac{V_{DD}}{3.3} \]

フルスケール(F.S.)は、F.S. = V_{sat}(min) - V_{sat}(max) [V]と定義します。

10.4. 電流感度温度ドリフト V_{bd} [%]および零電流電圧温度ドリフト V_{of-d} [mV]

電流感度温度ドリフトは環境温度(T_a)が35°CからT_{a1}(−40°C \leq T_{a1} \leq 90°C)に変化したときの電流感度の変化率と定義し、下式で計算されます。

\[V_{bd} = 100 \times \left(\frac{V_h(T_a = T_{a1})}{V_h(T_a = 35°C)} - 1 \right) \]
零電流電圧温度ドリフトは環境温度 \(T_a \) が35°Cから \(T_{a1} (-40°C \leq T_{a1} \leq 90°C) \) に変化したときの零電流電圧の変化量を定義し、下式で計算されます。

\[
V_{of-d} = V_{of}(T_a = T_{a1}) - V_{of}(T_a = 35°C)
\]

参考として、本製品における電流感度温度ドリフト (35°C基準) と零電流電圧温度ドリフト (35°C基準) の代表値をFigure 5に示します。

![Figure 5. 電流感度温度ドリフト（左）と零電流電圧温度ドリフト（右）](image)

10.5. 立上り応答時間 \(t_r [\mu s] \) 及び立下り応答時間 \(t_f [\mu s] \)

Figure 6に示すパルス入力電流 \(I_{IN} \) の立上り90%（又は立下り10%）到達時から、センサ出力電圧 \(V_{OUT} \) の立上り90%（又は立下り10%）到達時までの時間を立ち上り応答時間（又は立下り応答時間）と定義します。

![Figure 6. パルス応答の定義](image)
放熱用パターンは、一次側との必要な沿面距離・空間距離を確保しつつ、面積が出来るだけ大きくなるように設計して下さい。

Figure 7. CQ-3200の推奨接続回路例
Figure 8. CQ-3200の推奨接続回路例（A/Dコンバーター使用時）

(a) バイパスコンデンサ0.1μFをCQ-3200のVDD、VSS端子のできるだけ近くに配置してください。
(b) 必要に応じ、VOUTにローパスフィルタを挿入してください。
12. パッケージ

12.1. 外形寸法図

公差は特に定める以外は±0.1mmとします。

端子材質: Cu
端子めっき材: Sn 100%
パッケージ材料: RoHS対応、ハロゲンフリー

Figure 9. パッケージ寸法図
12.2. 推奨ランドパターン

![推奨ランドパターン図](image)

<table>
<thead>
<tr>
<th>L</th>
<th>1.42</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>7.62</td>
</tr>
<tr>
<td>W1</td>
<td>3.60</td>
</tr>
<tr>
<td>W2</td>
<td>1.65</td>
</tr>
<tr>
<td>W3</td>
<td>0.35</td>
</tr>
<tr>
<td>C</td>
<td>0.30</td>
</tr>
<tr>
<td>P</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Unit:mm

Figure 10. 推奨ランドパターン図

被測定電流ラインとして2層以上のパターンを使用する場合は、層間に十分に電流が流せるようにスルーホールを設けることを推奨します。
12.3. マーキング

マーク表示はレーザー印刷となります。AKMロゴを除き、全10文字表示となります。型名の最終桁につきましては、識別のために文字サイズを大きくしています。

![Figure 11. CQ-3200のマーク表示](image)

Table 6. 製造週マーク表示対応表

<table>
<thead>
<tr>
<th>Y(西暦の末年)</th>
<th>WW(週)</th>
<th>L(週製造回数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>印字</td>
<td>対応年</td>
<td>印字</td>
</tr>
<tr>
<td>0</td>
<td>0年</td>
<td>01</td>
</tr>
<tr>
<td>1</td>
<td>1年</td>
<td>02</td>
</tr>
<tr>
<td>2</td>
<td>2年</td>
<td>03</td>
</tr>
<tr>
<td>3</td>
<td>3年</td>
<td>04</td>
</tr>
<tr>
<td>4</td>
<td>4年</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5年</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6年</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7年</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8年</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>9年</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>第53週</td>
<td>A</td>
</tr>
<tr>
<td>54</td>
<td>第54週</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
13. 基板レイアウト例

(a) 表面パターン

(b) 裏面パターン

基板サイズ: 35.5mm × 42.0mm
板厚: 1.6mm
銅箔厚み: 70µm

基板レイアウトについての詳細は、アプリケーションノートをご参照ください。

Figure 12. CQ-3200の基板実装部レイアウト例
14. 信頼性試験項目

Table 7. 信頼性試験項目と条件

<table>
<thead>
<tr>
<th>No.</th>
<th>試験項目</th>
<th>試験方法・条件【準拠規格】</th>
<th>n</th>
<th>試験時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>高温高湿バイアス試験</td>
<td>【JEITA EIAJ ED-4701 102】 T_a = 85°C, 85%RH, 連続動作</td>
<td>22</td>
<td>1000h</td>
</tr>
<tr>
<td>2</td>
<td>高温動作試験</td>
<td>【JEITA EIAJ ED-4701 101】 T_a = 125°C, 連続動作</td>
<td>22</td>
<td>1000h</td>
</tr>
<tr>
<td>3</td>
<td>高温保存試験</td>
<td>【JEITA EIAJ ED-4701 201】 T_a = 150°C</td>
<td>22</td>
<td>1000h</td>
</tr>
<tr>
<td>4</td>
<td>低温保存試験</td>
<td>【JEITA EIAJ ED-4701 202】 T_a = -65°C</td>
<td>22</td>
<td>1000h</td>
</tr>
<tr>
<td>5</td>
<td>温度サイクル試験</td>
<td>【JEITA EIAJ ED-4701 105】 -65°C ↔ 150°C, 気相中 30min. ↔ 30min.</td>
<td>22</td>
<td>100サイクル</td>
</tr>
</tbody>
</table>

各試験実施前に以下の前処理を実施
乾燥125°C/24h → 吸湿60°C/60%RH/120h → リフロー3回（JEDEC MSL2a）

合否判定基準:
各信頼性試験実施前の値から試験実施後の値までの変動量が、以下に記載の値のものは良品とします。

- 電流感度 V_h (T_a = 35°C) : ±1.5%以下
- 零電流電圧 V_of (T_a = 35°C) : ±155mV以下
- 直線性 ρ (T_a = 35°C) : ±1%F.S.以下
- EEPROMデータ : 変化無きこと
15. お取扱い上の注意

[保管環境のご注意]
直射日光を避け、5～35℃の常温下で、デシケーター等を使用して出来るだけ湿度の低い環境下で保管して下さい。また、梱包開封後は4週間以内にご使用いただくことを推奨いたします。
また、塩素、硫黄等の腐食性のあるガスも避けるようお願いします。不適切な環境で保管した場合は、製品特性に影響する事があります。

[長期保管のご注意]
適切な保管環境でも長期に保管した場合は、リード端子の半田付け性が悪くなったり電気特性が不良になる場合がありますので、長期保管した場合は、半田付け性や電気特性をご確認の上ご使用下さい。
保管が長期（1年以上）に及ぶ場合は、窒素雰囲気中での保管をお勧めします。大気中で保管されますと、大気中の酸素により素子のリード部分が酸化され、リード端子の半田付け性が悪くなります。

[その他注意事項]
1) 塩素、硫黄等の腐食性ガスが発生する環境では使用しないで下さい。
2) 全てのリード線は鉛フリー（Sn100%メッキ処理）に対応しております。部品として保管する場合、高湿環境を避けるなど、なるべく酸化しにくい環境で保管してください。
3) 電源電圧の極性を誤って接続したり仕様に記載されている以上の過大な電圧で使用した場合、破損します。
4) 定格電流を上回る電流（実効値）で、長時間使用すると破損しますので、電流容量の選定に際しては、ご使用になる最大実効電流が電流センサの定格電流以下になるよう配慮して下さい。
5) 近接する電流や磁場の影響により、特性が変化することがあります。取り付け位置と方向には十分ご注意下さい。

本製品には、ガリウム砒素が使用されていますので、次の事項にご注意下さい。
1) 本製品を燃焼、溶融させたり、破壊させたり、化学処理を行わないでください。
2) 本製品を廃棄する場合は、関連法令と貴社の廃棄物処理規定に従って処理してください。
重要な注意事項

0. 本書に記載された弊社製品（以下、「本製品」といいます。）、および、本製品の仕様につきましては、本製品改善のために予告なく変更することがあります。従いまして、ご使用を検討の際には、本書に掲載した情報が最新のものであることを弊社営業担当、あるいは弊社特約店営業担当にご確認ください。

1. 本書に記載された情報は、本製品の動作例、応用例を説明するものであり、その使用に際して弊社および第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。お客様の機器設計において当該情報を使用される場合は、お客様の責任において行って頂くとともに、当該情報の使用に起因してお客様または第三者に生じた損害に対し、弊社はその責任を負うものではありません。

2. 本製品は、医療機器、航空宇宙用機器、輸送機器、交通信号機器、燃焼機器、原子力制御用機器、各種安全装置など、その装置・機器の故障や動作不良が、直接または間接を問わず、生命、身体、財産等へ重大な損害を及ぼすことが通常予想されるような極めて高い信頼性を要求される用途に使用されることを意図しておらず、保証もされていません。そのため、別途弊社より書面で許諾された場合を除き、これらの用途に本製品を使用しないでください。万一、これらの用途に本製品を使用された場合、弊社は、当該使用から生ずる損害等の責任を一切負うものではありません。

3. 弊社は品質、信頼性の向上に努めておりますが、電子製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により、生命、身体、財産等が侵害されることのないよう、お客様の責任において、本製品を搭載されるお客様の製品に必要な安全設計を行うことをお願いします。

4. 本製品および本書記載の技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。本製品および本書記載の技術情報を輸出または非居住者に提供する場合は、「外国為替及び外国貿易法」その他の適用のある輸出関連法令を遵守し、必要な手続を行ってください。本製品および本書記載の技術情報を国内外の法令および規則により製造、使用、販売を禁止されている機器・システムに使用しないでください。

5. 本製品の環境適合性等の詳細につきましては、製品個別に必ず弊社営業担当までお問合せください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようにご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、弊社は一切の責任を負いかねます。

6. お客様の転売等によりこの注意事項に反して本製品が使用され、その使用から損害等が生じた場合はお客様にて当該損害をご負担または補償して頂きますのでご了承ください。

7. 本書の全部または一部を、弊社の事前の書面による承諾なしに、転載または複製することを禁じます。