General Description

AKD4430-SB is an evaluation board for AK4430 (192kHz sampling 24Bit Stereo ΔΣ DAC with 2Vrms Output). AKD4430-SB has a digital audio interface (AK4115) of Optical input and can easily achieve the interface with digital audio system. Therefore, it is easy to evaluate the sound quality of AK4430.

Ordering Guide

AKD4430-SB ---- AK4430 Evaluation Board

Function

□ On-board digital audio interface. (AK4115)

Figure 1. AKD4430-SB Block diagram

(* Circuit diagram are attached at the end of this manual.)
Board Outline Chart

Outline Chart

![Board Outline Chart](image)

Figure 2. AKD4430-SB Outline Chart

Comment

1. **LOUT, ROUT (BNC-JACK)**
 - It is analog signal output Jack. The signal is output from LOUT/ROUT pins.

2. **COAX, PORT1, PORT2 (Digital signal connector)**
 - **COAX (BNC-JACK):** Digital signal (SPDIF, Fs: 24~48kHz) is input to the AK4115. (Default)
 - **PORT1 (Optical Connecter):** Optical digital signal (SPDIF, Fs: 32~48kHz) is input to the AK4115.
 - **PORT2 (10 pin header):** The clock and data can be input and output with this connector.

3. **REG, VDD, AGND, CVDD, VCC**
 - These are the power supply connectors. Connect power supply with these pins.
 - As for the detail comments, refer to the setup of power supply in P3.

4. **SW1, SW2 (Switch)**
 - **SW1:** Setting of frequency of MCKO that is output from AK4115.
 - **SW2:** Reset of AK4115. Keep “H” during normal operation.
Operation sequence

1) Set up the power supply lines.

Each supply line should be distributed from the power supply unit.

<table>
<thead>
<tr>
<th>Name of jack</th>
<th>Color of jack</th>
<th>Typ Voltage</th>
<th>Voltage Range</th>
<th>Using</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC1 (Note 1)</td>
<td>Red</td>
<td>+12V</td>
<td>+7V~+15V</td>
<td>AVDD, DVDD, TVDD, OVDD of AK4115 and VCC of Logic circuit (Regulator:T2)</td>
<td>Connected to +12V</td>
</tr>
<tr>
<td>VDD1</td>
<td>Red</td>
<td>+3.3V</td>
<td>+3V~+3.6V</td>
<td>VDD of AK4430</td>
<td>Open</td>
</tr>
<tr>
<td>CVDD1</td>
<td>Red</td>
<td>+3.3V</td>
<td>+3V~+3.6V</td>
<td>CVDD of AK4430</td>
<td>Open</td>
</tr>
<tr>
<td>AGND2</td>
<td>Black</td>
<td>0V</td>
<td>0V</td>
<td>Ground</td>
<td>Connected to GND (Should be connected)</td>
</tr>
<tr>
<td>REG (Note 2)</td>
<td>Red</td>
<td>+12V</td>
<td>+7V~+15V</td>
<td>VDD, CVDD of AK4430 (Regulator:T1)</td>
<td>Connected to +12V</td>
</tr>
</tbody>
</table>

Table 1. Set up of power supply lines

Note 1) In case of using +3.3V power supply to connect VCC1, it is possible to supply the voltage to AK4115 and the Logic circuit without using Regulator.

In this case, change to R36: Open → Short (0Ω); R34, R35: Short (0Ω) → Open

Note 2) In case of using +12V power supply to connect REG, use regulator: T1 can supply AK4430 with clean voltage. (Default)

In this case, change to R25, R44: Short (0Ω) → Open; R37, R43: Open → Short (0Ω); VDD, CVDD should be open.

2) DIP Switch setting:

Refer to Table 2 and Table 3

3) Power Down:

The AK4115 should be reset once by bringing SW2 (AK4115 PDN) “L” upon power-up.

Evaluation mode

1. Using DIR (Optical Link)

The DIR generates MCLK, BICK, LRCK and SDATA from the received data through optical connector (PORT1: TORX141). It is possible to evaluate the AK4430 by using CD disk.

Setting: R19: Open → 470Ω; R33: short (0Ω) → Open

2. Using DIR (COAX) (Default)

The DIR generates MCLK, BICK, LRCK and SDATA from the received data through BNC connector (J3). It is possible to evaluate the AK4430 by using CD disk.

Setting: R19: Open; R33: short (0Ω); (Default)

※ COAX is recommended for an evaluation of the Sound quality.

3. Supply all interface signals that include master clock via PORT2 from external equipments.

Setting: R11: 5.1Ω → Open
R12, R13, R14: 51Ω → Open
R15, R16, R17, R18: Open → 51Ω or short (0Ω)

Note) The above work of removing (open) or shorting resistors need to modify the connection by soldering.
Setting of DIP switch

[SW1]: AK4115 setting

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin</th>
<th>OFF ("L")</th>
<th>ON ("H")</th>
<th>Default の状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OCKS0</td>
<td>AK4115’s Master Clock setting</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>OCKS1</td>
<td>Look Table 3</td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

Table 2. SW1 setting

<table>
<thead>
<tr>
<th>OCKS1</th>
<th>OCKS0</th>
<th>MCLK Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/1</td>
<td>256fs @ fs=96kHz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>512fs @ fs=48kHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>128fs @ fs=192kHz</td>
</tr>
</tbody>
</table>

Table 3. MCLK clock setting

Setting of SW2 switch

Measurement Results

[Measurement condition]

- Measurement unit: Audio Precision SYS-2722 (No.00454)
- MCLK: 512fs, 256fs, 128fs
- BICK: 64fs
- fs: 44.1kHz, 96kHz, 192kHz
- Bit: 24bit
- Power Supply: REG(+12/3.3V)=VCC1=+12V, AGND2=GND
 (Regulator VDD=CVDD=+3.3V, Regulator VCC=+3.3V)
- Interface: DIR
- Temperature: Room

Table Data

fs=44.1kHz, MCLK=512fs, BICK=64fs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input signal</th>
<th>Measurement filter</th>
<th>Lch</th>
<th>Rch</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>1kHz, 0dBFS</td>
<td>20kHz LPF</td>
<td>-91.5</td>
<td>-91.4</td>
<td>dB</td>
</tr>
<tr>
<td>DR</td>
<td>1kHz, -60dBFS</td>
<td>20kHz LPF, A-weighted</td>
<td>104.3</td>
<td>104.4</td>
<td>dB</td>
</tr>
<tr>
<td>S/N</td>
<td>“0” data</td>
<td>20kHz LPF, A-weighted</td>
<td>104.3</td>
<td>104.4</td>
<td>dB</td>
</tr>
</tbody>
</table>

fs=96kHz, MCLK=256fs, BICK=64fs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input signal</th>
<th>Measurement filter</th>
<th>Lch</th>
<th>Rch</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>1kHz, 0dBFS</td>
<td>40kHz LPF</td>
<td>-90.3</td>
<td>-90.1</td>
<td>dB</td>
</tr>
<tr>
<td>DR</td>
<td>1kHz, -60dBFS</td>
<td>40kHz LPF, A-weighted</td>
<td>103.8</td>
<td>103.8</td>
<td>dB</td>
</tr>
<tr>
<td>S/N</td>
<td>“0” data</td>
<td>40kHz LPF, A-weighted</td>
<td>103.8</td>
<td>103.8</td>
<td>dB</td>
</tr>
</tbody>
</table>

fs=192kHz, MCLK=128fs, BICK=64fs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input signal</th>
<th>Measurement filter</th>
<th>Lch</th>
<th>Rch</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>1kHz, 0dBFS</td>
<td>40kHz LPF</td>
<td>-88.7</td>
<td>-88.5</td>
<td>dB</td>
</tr>
<tr>
<td>DR</td>
<td>1kHz, -60dBFS</td>
<td>40kHz LPF, A-weighted</td>
<td>103.5</td>
<td>103.5</td>
<td>dB</td>
</tr>
<tr>
<td>S/N</td>
<td>“0” data</td>
<td>40kHz LPF, A-weighted</td>
<td>103.7</td>
<td>103.7</td>
<td>dB</td>
</tr>
</tbody>
</table>
Plot Data

fs=44.1kHz

Figure 1. FFT (0dBFS Input, fin=1kHz)

Figure 2. FFT (-60dBFS Input, fin=1kHz)
Figure 3. FFT (No Signal)

Figure 4. THD + N vs Input Level (fin=1kHz)
Figure 5. THD + N vs Input Frequency (0dBFS Input)

Figure 6. Linearity (fin=1kHz)
Figure 7. Frequency Response (0dBFS Input)

Figure 8. Crosstalk (0dBFS Input)
Figure 9. FFT (0dBFS Input, fin=1kHz)

Figure 10. FFT (-60dBFS Input, fin=1kHz)
Figure 11. FFT (No Signal)

Figure 12. THD+N vs Input Level (fin=1kHz)
Figure 13. THD+N vs Input Frequency (0dBFS Input)

Figure 14. Linearity (fin=1kHz)
Figure 15. Frequency Response (0dBFS Input)

Figure 16. Crosstalk (0dBFS Input)
Figure 17. FFT (0dBFS Input, fin=1kHz)

Figure 18. FFT (-60dBFS Input, fin=1kHz)
Figure 19. FFT (No Signal)

Figure 20. THD+N vs Input Level (fin=1kHz)
Figure 21. THD+N vs Input Frequency (0dB Input)

Figure 22. Linearity (fin=1kHz)
Figure 23. Frequency Response (0dBFS Input)

Figure 24. Crosstalk (0dBFS Input)
REVISION HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Manual Revision</th>
<th>Board Revision</th>
<th>Reason</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/06/12</td>
<td>KM134700</td>
<td>0</td>
<td>First Edition</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20/06/29</td>
<td>KM134701</td>
<td>0</td>
<td>addition</td>
<td>-</td>
<td>Schematic addition</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.

2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.

3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.

4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.

7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

Rev.1