GENERAL DESCRIPTION

The AKD4468-SB is an evaluation board for the AK4468 (32-bit 8ch Premium DAC) that supports AV-Receiver, Network-Audios, USB-DACs, Car-Audio Systems. It integrates differential output low pass filters, allowing quick evaluation with digital audio interface.

■ Ordering guide

AKD4468-SB --- Evaluation board for AK4468VN
(Control software is packed with this board)

FUNCTION

☐ 3 type digital audio interface
 - COAX input
 - Optical input
 - External input
☐ Low Pass Filters (LPF) for Pre-amplifier Outputs
☐ 8ch Analog outputs
☐ USB Port for Serial control

Figure 1.AKD4468-SB Block Diagram
Description

1. Connector for Power supply
 +12V, -12V, GND
 Terminals for power supply. Refer to table1.

2. OUTL1~OUTL4, OUTR1~OUTR4
 RCA Connector for analog outputs.

3. LDO: T601~T605
 T601: AK1110AEU : AK4468AVDD, VREFH1 ~ 4.
 T602, T603: AP1158ADS, AP1152ADU40 : AK4468 TVDD.
 T604, T605: AP1158ADS, AP1152ADU40 : AK4118A, other logic.

4. U101
 DAC : AK4468VN 32bit-8ch DAC.

5. U301
 AK4118A are Digital Audio I/F Transceivers.
(6) PORT30
Coaxial input connector of the AK4118A.
When using the PORT30: R304=0 Ω, R302=Open (Default)

(7) PORT302
Optical input connector of the AK4118A.
When using the PORT302: R304/Open, R302=0 Ω

(8) PORT304
10 pin header for connecting with external interface.
MCLK,BICK/DLCLK,LRCK/DSDL1,SDTI1/DSDR1,SDTI2/DSDL2
When using the PORT304: R318=R319=R320=R321=R322=51 Ω, R306=R307=R309=R310=Open

(9) PORT303
10 pin header for connecting with external interface.
SDTI3/DSDR2/TDMO1,SDTI4/DSDL3/TDMO2,DSDR3,DSDL4,DSDR4
When using the PORT303: R313=R314=R315=R316=R317=51 Ω, R311=R312=Open

(10) PORT501
USB I/F port. The AK4468 can be controlled by a PC via USB port.

(11) PIC18F4550
USB control chip.

(12) SW301
Power down switch for AK4118A. Upside is “Hi”, downside is “Lo”.
Refer to Table2.SW301 setting.

(13) SW401
Setting switch for AK4468. Upside is “Hi”, downside is “Lo”.
Refer to Table5.SW401 setting.

(14) SW402
Power down switch for AK4468. Upside is “Hi (on)”, downside is “Lo (off)”.

(15) SW403
Mute switch for AK4468.
Push: AK4468 is mute
Release: AK4468 is unmute

(16) SW404
Power down switch for AK4118A. Upside is “Hi (on)”, downside is “Lo (off)”.

(17) OPAMP
Differential input to single-ended output amplifier.
Evaluation Board Manual

Operation sequence

[1] Set up power supplies
The power should be separated from the source of a power supplier.

<table>
<thead>
<tr>
<th>Name of connector</th>
<th>Color of connector</th>
<th>Voltage</th>
<th>Use application</th>
<th>Comment and attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>Red</td>
<td>+12V</td>
<td>• LDO</td>
<td>Should always be connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• OP-Amp</td>
<td></td>
</tr>
<tr>
<td>-12V</td>
<td>Blue</td>
<td>-12V</td>
<td>• OP-Amp</td>
<td>Should always be connected.</td>
</tr>
<tr>
<td>GND</td>
<td>Black</td>
<td>0V</td>
<td>• GND</td>
<td>Should always be connected.</td>
</tr>
</tbody>
</table>

Table 1. Power supply line setting

[2] Switch setting
It should be set to match the mode.

(1) SW301 setting

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Name</th>
<th>Function</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIF2</td>
<td>DIF2-pin of AK4118A.</td>
<td>Hi</td>
</tr>
<tr>
<td>2</td>
<td>DIF1</td>
<td>DIF1-pin of AK4118A.</td>
<td>Lo</td>
</tr>
<tr>
<td>3</td>
<td>DIF0</td>
<td>DIF0-pin of AK4118A.</td>
<td>Lo</td>
</tr>
<tr>
<td>4</td>
<td>OCKS1</td>
<td>OCKS1-pin of AK4118A.</td>
<td>Hi</td>
</tr>
<tr>
<td>5</td>
<td>OCKS0</td>
<td>OCKS0-pin of AK4118A.</td>
<td>Lo</td>
</tr>
</tbody>
</table>

Table 2. SW301 setting

<table>
<thead>
<tr>
<th>Mode</th>
<th>DIF2</th>
<th>DIF1</th>
<th>DIF0</th>
<th>SDTO</th>
<th>LRCK</th>
<th>BICK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I/O</td>
<td></td>
<td></td>
<td>I/O</td>
<td></td>
<td>I/O</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16bit, Right justified</td>
<td>H/L</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18bit, Right justified</td>
<td>H/L</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>20bit, Right justified</td>
<td>H/L</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>24bit, Right justified</td>
<td>H/L</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>H/L</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24bit, FS</td>
<td>L/H</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>H/L</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>24bit, FS</td>
<td>L/H</td>
</tr>
</tbody>
</table>

Table 3. AK4118A Audio interface format

<table>
<thead>
<tr>
<th>OCKS1</th>
<th>OCKS0</th>
<th>MCKO1</th>
<th>fs (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>256fs</td>
<td>96 kHz</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>256fs</td>
<td>96 kHz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>512fs</td>
<td>48 kHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>128fs</td>
<td>192 kHz</td>
</tr>
</tbody>
</table>

Table 4. AK4118A MCLK setting
(2) SW401 setting

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Name</th>
<th>Function</th>
<th>default</th>
</tr>
</thead>
</table>
| 1 | I2C | I2C pin of AK4468
H: I2C mode
L: SPI mode | Hi |
| 2 | PS | PS pin of AK4468
H: Pin control mode
L: Register control mode | Hi |
| 3 | DCHAIN | DCHAIN pin of AK4468 (Pin control mode only)
H: DCHAIN mode
L: Normal mode | Lo |
| 4 | TDM0 | TDM0 pin of AK4468 (Pin control mode only) | Lo |
| 5 | TDM1 | TDM1 pin of AK4468 (Pin control mode only) | Lo |
| 6 | DIF | DIF pin of AK4468 (Pin control mode only)
H: 32bit I2S compatible
L: 32bit LSB justified | Lo |
| 7 | CAD0-I2C | CAD0 pin of AK4468 (I2C mode only) | Lo |
| 8 | CAD0-SPI | CAD0 pin of AK4468 (SPI mode only) | Lo |
| 9 | CAD1 | CAD1 pin of AK4468 (Register control mode only) | Lo |

Table 5. SW401 setting

(3) SW402/SW403/SW404 setting

| SW402 | DAC-PDN | Power down switch for AK4468
Hi: Power up
Lo: Power down
※Should be “Hi” during operation AK4468. |
|-------|---------|---------------------------------|
| SW403 | MUTE | Mute switch for AK4468 (Pin control mode only)
Release: Unmute
Push: Mute |
| SW404 | DIR-PDN | Power down switch for AK4118A
Hi: Power up
Lo: Power down
※Should be “Hi” during operation AK4118A. |

Table 6. SW402/SW403/SW404 setting
■ Evaluation Board and Control Software Settings

1. Set an evaluation board properly.
2. Connect a PC and an evaluation board the USB cable.
3. The USB control IF is recognized as HID (Human Interface Device) on the PC.
 It is not necessary to install a new driver.
4. Start up the control program.
 When the screen does not display “AKDUSBIF-B” at bottom left, reconnect the PC and the USB cable, and push the [InitPort] button.
5. Proceed evaluation by following the process below.

[Support OS]
Windows 7(32bit) / 10(64bit)

![Start Up Window](image)

Figure 3. Start Up Window
Operation Overview

Function, register map can be controlled by this control software.

Figure 4. Control Buttons in Main Window

1. [InitPort]: Reset the USB port.
 Click this button after the control software starts up when connecting to PC.

2. [SPI / I2C]: Select up interface of the AK4468.
 This setting can be changed when the PDN pin = “L”.

3. [CAD00 ~ CAD11]: Select the CAD pin settings.
 This setting can be changed when the PDN pin = “L”.

4. [Write Default]: Initialize all registers of the AK4468.

5. [All Read]: Executes read commands for all registers displayed.

6. [All Write]: Executes write commands for all registers displayed.

7. [Script Save]: Select a file and save all settings of this software.
 The saved file can be used as a script.

8. [Init Board]: Reset the USB port and the main board.

9. [Close]: Quit the control software.
Tab Functions

1. [MainFunc] Tab : Function

Register settings of the AK4468 can be controlled by this window. The register map will be updated by setting in this window. (Refer to the AK4468 datasheet for register definitions)

![Figure 5. Window of [MainFunc]](attachment:image)

- [24bit I2S fs=48kHz] button: Setting for I2S 24bit mode (fs=48kHz).
- [DSD 256fs] button: Setting for DSD mode (256fs).
- [DSD] button: Opens “DSD Control” dialog box.
- [Audio I/F] button: Opens “Audio I/F Control” dialog box.
- [Mode] box: The select PCM or DSD or Auto of AK4468 is controlled.
- [DAC Digital Filter] combo box: The select of Digital Filter. PCM mode only.
- [Sampling Rate] combo box: The select of fs. PCM mode only.
- [DSD Digital Filter Cut Off Frequency] combo box: The select of Digital Filter Cut Off Frequency. DSD mode only.
- [DSD Normal Path] button: The select of DSD Normal path or DSD Volume Bypass.
- [RSTN] button: RSTN of AK4468 is controlled.
- [SMUTE] button: SMUTE of AK4468 is controlled.
- [Volume] button: Opens “Volume Control” dialog box.
- [De-em] button: Opens “De-emphasis Control” dialog box.
- [DAC1～4] button: The power of DAC1～4 is controlled.
- [L1～L4ch Invert]/[R1～R4ch Invert] combo box: The invert or non-invert select of Output data slot.
- [Address/Data] window: Write or read address and data.
- [Read] button: All registers displayed.
1-1. [DSD] : DSD Control Dialog

This dialog is for DSD Control. (for DSD mode)

Register values can be selected by check boxes and combo boxes.

![DSD Control Dialog](image)

Figure 6. Window of [DSD Control]

1-2. [Audio I/F] : Audio I/F Control Dialog

This dialog is for Audio I/F Control. (for PCM mode)

Register values can be selected by check boxes and combo boxes.

![Audio I/F Control Dialog](image)

Figure 7. Audio I/F Control Dialog
1-3. [Volume] : Volume Control Dialog

This dialog is for a ATT of DACs Control.
The volume can be changed by writing a value in a dialog box. The slide bar moves to the value that is written in the dialog box.
The Transition Time between set Values of ATTL/R can be controlled.

![Volume Control Dialog](image)

Figure 8. Volume Control Dialog

1-4. [De-em] : De-emphasis Filter Control Dialog

This dialog is for a De-emphasis Filter of DACs Control.

When the checkbox is checked, the data will be selected.

![De-emphasis Filter Control](image)

Figure 9. De-emphasis Filter Control Dialog
2. [Script] Tab : Script Function

[Refer] : Select a script file. The script written on the file will be executed automatically.
[Repeat] : The selected script file will be executed once again.

Figure 10. Window of [Script]
3. [RegMap] Tab: Register Map Tabs

Register write and read are available in this window. Each tab name shows register address range included in the tab window.

Figure 11. Window of [RegMap]

Each bit on the register map is a push-button switch. Button Down indicates “1” and the bit name is shown in red. Button Up indicates “0” and the bit name is shown in blue.

Grayed out registers are Read-Only registers. They cannot be controlled. The registers which are not defined on the datasheet, “0” assigned bits and Reserved bits are indicated as “---”.

[Write] and [Read] buttons are shown on the right of the each address if the register is writable and readable.
3-1. [Write] : Data Write Dialog

![Image of Write Dialog Window]

Figure 12. Window of [Write]

Select the [Write] button located on the right of each corresponding address when changing two or more bits on the same address simultaneously.

Click the [Write] button for the register pop-up dialog box shown above.

When the checkbox next to the register is checked, the data will become “1”. When the checkbox is not checked, the data will become “0”.

Click [OK] to write the set values to the registers, or click [Cancel] to cancel this setting.

3-2. [Read] : Data Read

Click the [Read] button located on the right of each corresponding address to execute a register read. The register map will be updated after executing the [Read] command. (I2C mode only)
Measurement Results

- Measurement unit: Audio Precision APx555 (No.00732)
- MCLK: 512fs, 256fs, 128fs
- BICK: 64fs
- fs: 44.1kHz, 96kHz, 192kHz
- Bit: 24bit
- Input Frequency: 1kHz
- Power Supply: ±12V, GND
 - AVDD=VREFHx=5.0V (Regulator), TVDD=3.3V (Regulator)
- Pass: COAX → (DIR) → AK4468VN → AOUTL/R
- Temperature: Room
- Board Setting: Serial Mode (I2C)

[Measurement Results]

1. fs=44.1kHz, MCLK=512fs, BICK=64fs

<table>
<thead>
<tr>
<th>DAC1 : SDTI1 => DAC1 => L/ROUT1</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 44.1kHz (0dBFS)</td>
<td>108.6</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 44.1kHz (-60dBFS, A-Weighted)</td>
<td>115.9</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 44.1kHz (No Inputs, A-weighted)</td>
<td>116.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC2 : SDTI2 => DAC2 => L/ROUT2</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 44.1kHz (0dBFS)</td>
<td>109.1</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 44.1kHz (-60dBFS, A-Weighted)</td>
<td>116.5</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 44.1kHz (No Inputs, A-weighted)</td>
<td>116.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC3 : SDTI3 => DAC3 => L/ROUT3</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 44.1kHz (0dBFS)</td>
<td>111.6</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 44.1kHz (-60dBFS, A-Weighted)</td>
<td>116.6</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 44.1kHz (No Inputs, A-weighted)</td>
<td>116.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC4 : SDTI4 => DAC4 => L/ROUT4</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 44.1kHz (0dBFS)</td>
<td>111.1</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 44.1kHz (-60dBFS, A-Weighted)</td>
<td>116.6</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 44.1kHz (No Inputs, A-weighted)</td>
<td>116.5</td>
</tr>
</tbody>
</table>
2. fs=96kHz, MCLK=256fs, BICK=64fs

<table>
<thead>
<tr>
<th>DAC : SDT11 => DAC1 => L/ROUT1</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 96kHz (0dBFS)</td>
<td>105.1</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 96kHz (-60dBFS, A-Weighted)</td>
<td>115.0</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 96kHz (No Inputs, A-weighted)</td>
<td>115.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC : SDT12 => DAC2 => L/ROUT2</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 96kHz (0dBFS)</td>
<td>108.7</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 96kHz (-60dBFS, A-Weighted)</td>
<td>115.7</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 96kHz (No Inputs, A-weighted)</td>
<td>115.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC : SDT13 => DAC3 => L/ROUT3</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 96kHz (0dBFS)</td>
<td>108.0</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 96kHz (-60dBFS, A-Weighted)</td>
<td>116.0</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 96kHz (No Inputs, A-weighted)</td>
<td>116.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC : SDT14 => DAC4 => L/ROUT4</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 96kHz (0dBFS)</td>
<td>108.1</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 96kHz (-60dBFS, A-Weighted)</td>
<td>116.1</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 96kHz (No Inputs, A-weighted)</td>
<td>116.0</td>
</tr>
</tbody>
</table>

3. fs=192kHz, MCLK=128fs, BICK=64fs

<table>
<thead>
<tr>
<th>DAC : SDT11 => DAC1 => L/ROUT1</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 192kHz (0dBFS)</td>
<td>105.5</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 192kHz (-60dBFS, A-Weighted)</td>
<td>115.6</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 192kHz (No Inputs, A-weighted)</td>
<td>115.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC : SDT12 => DAC2 => L/ROUT2</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 192kHz (0dBFS)</td>
<td>108.7</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 192kHz (-60dBFS, A-Weighted)</td>
<td>116.0</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 192kHz (No Inputs, A-weighted)</td>
<td>115.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC : SDT13 => DAC3 => L/ROUT3</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 192kHz (0dBFS)</td>
<td>108.0</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 192kHz (-60dBFS, A-Weighted)</td>
<td>116.0</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 192kHz (No Inputs, A-weighted)</td>
<td>115.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAC : SDT14 => DAC4 => L/ROUT4</th>
<th>Result</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/(N+D)</td>
<td>fs = 192kHz (0dBFS)</td>
<td>106.3</td>
</tr>
<tr>
<td>DR</td>
<td>fs = 192kHz (-60dBFS, A-Weighted)</td>
<td>116.0</td>
</tr>
<tr>
<td>S/N</td>
<td>fs = 192kHz (No Inputs, A-weighted)</td>
<td>115.9</td>
</tr>
</tbody>
</table>
[Plot Data]

- **FFT1** (fin=1 kHz, Input Level=0dBFS)
 DAC3 : SDTI3 => DAC3 => L/ROUT3

 ![Figure 13. fs=44.1 kHz](image1)
 ![Figure 14. fs=96 kHz](image2)
 ![Figure 15. fs=192 kHz](image3)

- **FFT2** (fin=1 kHz, Input Level=-60dBFS)
 DAC3 : SDTI3 => DAC3 => L/ROUT3

 ![Figure 16. fs=44.1 kHz](image4)
 ![Figure 17. fs=96 kHz](image5)
 ![Figure 18. fs=192 kHz](image6)
■ FFT3 (Noise floor)
DAC3 : SDTI3 => DAC3 => L/ROUT3

Figure 19. fs=44.1 kHz

Figure 20. fs=96 kHz

Figure 21. fs=192 kHz

■ THD+N vs Input level
DAC3 : SDTI3 => DAC3 => L/ROUT3

Figure 22. fs=44.1 kHz

Figure 23. fs=96 kHz

Figure 24. fs=192 kHz
THD+N vs Input Frequency
DAC3 : SDTI3 => DAC3 => L/ROUT3

- **Figure 25.** fs=44.1 kHz
- **Figure 26.** fs=96 kHz
- **Figure 27.** fs=192 kHz

Linearity
DAC3 : SDTI3 => DAC3 => L/ROUT3

- **Figure 28.** fs=44.1 kHz
- **Figure 29.** fs=96 kHz
- **Figure 30.** fs=192 kHz
Frequency Response

DAC3 : SDTI3 => DAC3 => L/ROUT3

![Figure 31. fs=44.1 kHz](image1)

![Figure 32. fs=96 kHz](image2)

![Figure 33. fs=192 kHz](image3)

Crosstalk

DAC3 : SDTI3 => DAC3 => L/ROUT3

![Figure 34. fs=44.1 kHz](image4)

![Figure 35. fs=96 kHz](image5)

![Figure 36. fs=192 kHz](image6)
REVISION HISTORY

<table>
<thead>
<tr>
<th>Date (yy/mm/dd)</th>
<th>Manual Revision</th>
<th>Board Revision</th>
<th>Reason</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/02/01</td>
<td>KM130700</td>
<td>0</td>
<td>First edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19/02/22</td>
<td>KM130701</td>
<td>1</td>
<td>Modification</td>
<td></td>
<td>Update measurement results. Update control software. Update schematic.</td>
</tr>
<tr>
<td>19/10/04</td>
<td>KM130702</td>
<td>1</td>
<td>Modification</td>
<td></td>
<td>Correct the error of the schematic revision. (Rev.2 → Rev.1)</td>
</tr>
<tr>
<td>20/06/09</td>
<td>KM130703</td>
<td>2</td>
<td>Modification</td>
<td></td>
<td>Update schematic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Figure 2 Description number correction (12) → (11) (13) (14) (15) (16) → (12) (13) (14) (15) (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Correction of description 4. Start up the control program. USB control box → USB cable</td>
</tr>
</tbody>
</table>

4. Correction of description
3. Replace the text soft notation with software notation
2. Correction of description
1. Update schematic.

Correction of description
- **PORT304**: BICK → BICK/DLCLK
- **LRCK**: LRCK → LRCK/DSDL1
- **SDTI3/SDSR2**: SDTI3/SDSR2 → SDTI3/SDSR2/TDMO1
- **SDTI4/DSDL3**: SDTI4/DSDL3 → SDTI4/DSDL3/TDMO2
IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.

2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.

3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.

4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.

7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.
D C B A

OpGND OpGND OpGND OpGND

OpGND OpGND OpGND OpGND

OpGND OpGND OpGND OpGND

OpGND OpGND OpGND OpGND