AK7738Aはマイクアンプ付きの24bitステレオADC、入力セレクタ付きの24bitステレオADC、24bitモノラルADC、4chの32bit DAC、サンプリング周波数192kHzまで対応の4系統ステレオSRC、DITに加え、Audio/HF両用のDual DSPとSub DSPを内蔵したシグナルプロセッサです。Dual DSPとSub DSPは共に2560step/fs（48kHzサンプリング時）の並列演算能力を持ちます。Dual DSPは同期した異なるサンプリング周波数で動作可能のため、音響処理を同時、ハンズフリー(HF)等のボイス処理を行うことも可能です。RAMベースDSPのため、プログラム書き換えることで、ユーザの要望に合わせた音響処理や独自開発の高性能HF機能を実現させることができます。64pin LQFPパッケージに実装されます。

2. 特 長

□ Dual DSP部: (DSP1, DSP2は同じ仕様、メモリエリアは共用)
- データ幅: 28bit（略式浮動小数点対応）
- マシンサイクル: 最速8.1ns (2560fs, fs=48kHz時)
- 乗算器: 24 x 24 → 48bit（倍精度演算可）
- 除算器: 24 / 24 → 24bit（浮動小数正規化機能付き）
- ALU: 52bit算術演算（with overflow margin 4bit）
- プログラムRAM: 8192word x 36bit
- 係数RAM: 6144word x 24bit
- データRAM: 6144word x 28bit
- 遅延用RAM: 2048word x 28bit
- JX pins (Interrupt)
- Clock Mode Selector for DSP1, DSP2
- 独立したパワーマネージメント機能

□ Sub DSP部:
- データ幅: 28bit（略式浮動小数点対応）
- マシンサイクル: 最速8.1ns (2560fs, fs=48kHz時)
- 乗算器: 24 x 24 → 48bit（倍精度演算可）
- 除算器: 24 / 24 → 24bit（浮動小数正規化機能付き）
- ALU: 52bit算術演算（with overflow margin 4bit）
- プログラムRAM: 1024word x 36bit
- 係数RAM: 2048word x 24bit
- データRAM: 4096word x 28bit

□ ADC1部: マイクアンプ付き24bitステレオADC
- サンプリング周波数: fs = 8kHz ～ 192kHz
- チャンネル独立マイクアナログゲインアンプ付き (0~18dB(2dB Step), 18~36dB(3dB step))
- 差動入力またはシングルエンド入力選択可能
- アナログ特性 S/N: 102dB (fs=48kHz, 差動入力、マイクゲイン=0dB)
- チャンネル独立ディジタルポリューム内蔵(24dB〜103dB, 0.5dB Step, Mute)
- DCオフセットキャンセル用ディジタルHPF
- 低ノイズマイクバイアス電源出力 x 2系統
- 5種類のディジタルフィルタによる音質選択
□ ADC2部: 入力セレクタ付き24bitステレオADC
- サンプリング周波数: fs = 8kHz ~ 192kHz
- アナログ入力セレクタ: 差動入力1系統 or シングルエンド入力2系統, 疑似差動入力1系統
- アナログ特性 S/N: 102dB (fs=48kHz, 差動入力)
- チャンネル独立ディジタルポリューム内蔵(24dB〜-103dB, 0.5dB Step, Mute)
- DCオフセットキャンセル用ディジタルHPF
- 4種類のディジタルフィルタによる音質選択

□ ADCM部: 24bitモノラルADC
- サンプリング周波数: fs = 8kHz ~ 192kHz
- 差動入力またはシングルエンド入力選択可能
- アナログ特性 S/N: 102dB (fs=48kHz, 差動入力)
- ディジタルポリューム内蔵(12dB〜-115dB, 0.5dB Step, Mute)
- ディジタルフィルタによる音質選択

□ DAC部: Advanced 32bit DAC
- 2ch x 2系統
- サンプリング周波数: fs = 8kHz ~ 192kHz
- シングルエンド出力
- アナログ特性 S/N: 108dB (fs=48kHz)
- チャンネル独立ディジタルポリューム内蔵(44.1kHz 〜 48kHz, 0.5dB Step, Mute)
- 4系統のディジタルフィルタによる音質選択

□ SRC部:
- 2ch x 4系統
 - FSI = 8kHz 〜 192kHz, FSO = 8kHz 〜 192kHz (FSO/FSI = 0.167 〜 6.0)

□ FSCONV部: モノラル簡易SRC
- 2系統内蔵
 - FSI = 44.1kHz 〜 48kHz, FSO = 8kHz 〜 16kHz (FSO/FSI = 0.167 〜 0.363)

□ DIT部:
- S/PDIF, IEC60958, AES/EBU, EIAJ CP1201民生モード対応
- 24bit 2ch出力

□ Digital Interfaces
- ディジタル入力ポート(max 24ch, TDM使用時)
- ディジタル出力ポート(max 28ch, TDM使用時)
- 独立LRCK/BICK入出力ポート x 5系統
- データフォーマット: 前詰め32, 24bit/後詰め24, 20, 16bit/I²S
- Short / Long Frame対応
- TDM入出力モード対応

□ ディジタルミキサー回路内蔵

□ PLL回路内蔵

□ μPインターフェース: SPI(6MHz max) / I²C(400kHz Fast Mode or 1MHz Fast Mode Plus)

□ 電源電圧:
 - Analog: AVDD: 3.0V 〜 3.6V (typ.3.3V)
 - Digital: LVDD: 3.0V 〜 3.6V (typ.3.3V) (3.3V → 1.2Vレギュレータ内蔵)
 - I/F VDD33: 3.0V 〜 3.6V (typ.3.3V)
 - TVDD1: 1.7V 〜 3.6V (typ.3.3V)
 - TVDD2: 1.7V 〜 3.6V (typ.3.3V)

□ 動作温度範囲: Ta = -40 〜 85℃

□ パッケージ: 64pin LQFP (10mm x 10mm, 0.5mm pitch)
3. 目次

1. 概要.. 1
2. 特長.. 1
3. 目次.. 3
4. ブロック図と機能説明.. 4
 ■ デバイスブロック図... 4
 ■ DSP1部ブロック図... 5
 ■ DSP2部ブロック図... 6
 ■ Sub DSP部ブロック図.. 7
5. ピン配置と機能説明.. 8
 ■ オーダーリングガイド... 8
 ■ ピン配置図.. 8
 ■ ピン機能説明... 9
 ■ 使用しないピンの処理について.. 12
 ■ プルダウン抵抗付ピンの状態... 12
 ■ パワーダウン時、出力ピンの状態... 13
 ■ 各ディジタルピンとディジタル電源の関連... 13
6. 絶対最大定格.. 14
7. 推奨動作条件... 14
8. 電気的特性... 15
 ■ アナログ特性... 15
 ■ 消費電流... 20
9. デイジタルフィルタ特性.. 21
10. DC特性.. 33
 ■ DC特性.. 33
11. スイッチング特性... 34
12. 外部接続回路例.. 42
 ■ 接続図.. 42
 ■ 周辺回路... 44
13. パッケージ... 46
 ■ 外形寸法図.. 46
 ■ 材質・メッキ仕様.. 46
 ■ マーキング.. 47
14. 改訂履歴.. 47
 重要な注意事項.. 48
4. ブロック図と機能説明

■ デバイスブロック図

Figure 1. 全体ブロック図
■ DSP1部ブロック図

Figure 2. DSP1のブロック図 (Note 1)

Note 1. Coefficient RAM, Data RAM, Delay RAM, Program RAMはDSP1, DSP2共用で、割合はレジスタで調整可能です。
Figure 3. DSP2のブロック図(Note 1)
Figure 4. Sub DSPのブロック図
5. ピン配置と機能説明

■ オーダーリングガイド

AK7738AVQ -40～+85℃ 64ピン LQFP (0.5mm pitch)
AKD7738A

AK7738A評価ボード

■ ピン配置図

64pin LQFP (Top View)

*** は、プルダウン抵抗付ピンです。
*** は、ピン名
ピン機能説明

<table>
<thead>
<tr>
<th>No.</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
</table>
| 1 | AOUT2R | O | DAC2 Rch アナログ出力ピン
・パワーダウン時の出力は“Hi-Z”です。 |
| 2 | AOUT2L | O | DAC2 Lch アナログ出力ピン
・パワーダウン時の出力は“Hi-Z”です。 |
| 3 | TESTI | I | テスト入力ピン
・“L”にしてください。 |
| 4 | LRCK5 | I/O | LR チャネル選択 5 ピン |
| 5 | SDOUT5 | O | シリアルディジタルデータ出力 5 ピン |
| | GPO2 | O | プログラマブル出力 2 ピン (DSP2 の GPO0 出力) |
| 6 | BICK5 | I/O | シリアルビットクロック 5 ピン |
| 7 | CLKO | O | マスタクロック出力ビン |
| 8 | SDOUT6 | O | シリアルディジタルデータ出力 6 ピン |
| | GPO3 | O | プログラマブル出力 3 ピン (DSP2 の GPO1 出力) |
| 9 | SDIN5 | I | シリアルディジタルデータ入力 5 ピン |
| | JX0 | I | 外部条件ジャンプ入力 0 ピン |
| 10 | SDIN6 | I | シリアルディジタルデータ入力 6 ピン |
| 11 | XTO | O | 発振回路出力ビン
・水晶振動子を使用する場合、水晶振動子を XTI Pin と XTO Pin に接続してください。
・水晶振動子を使用しない場合は、オープンにしてください。 |
| 12 | XTI | I | 発振回路入力ビン
・水晶振動子を使用する場合、水晶振動子を XTI Pin と XTO Pin に接続してください。
・水晶振動子を使用しない場合は、外部クロック又は DVSS1 に接続してくください。 |
<p>| 13 | VDD33 | - | デジタルIO用 3.3V 電源ビン 3.0～3.6V (typ.3.3V) |
| 14 | DVSS1 | - | デジタルグランド 1 ピン 0V (基板電位) |
| 15 | TVDD1 | - | デジタルIO電源 1 ビン 1.7～3.6V (typ.3.3V) |
| 16 | LRCK2 | I/O | LR チャネル選択 2 ピン |
| 17 | BICK2 | I/O | シリアルビットクロック 2 ピン |
| 18 | SDOUT2 | O | シリアルディジタルデータ出力 2 ピン |
| | GPO0 | O | プログラマブル出力 0 ビン (DSP1 の GPO0 出力) |
| 19 | SDIN2 | I | シリアルディジタルデータ入力 2 ピン |
| | JX0 | I | 外部条件ジャンプ入力 0 ピン |
| 20 | LRCK1 | I/O | LR チャネル選択 1 ピン |
| 21 | BICK1 | I/O | シリアルビットクロック 1 ピン |
| 22 | SDOUT1 | O | シリアルディジタルデータ出力 1 ピン |
| 23 | SDIN1 | I | シリアルディジタルデータ入力 1 ピン |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>SDIN3</td>
<td>I</td>
<td>シリアルディジタルデータ入力 3 ピン</td>
</tr>
<tr>
<td>25</td>
<td>SDIN4</td>
<td>I</td>
<td>シリアルディジタルデータ入力 4 ピン</td>
</tr>
<tr>
<td>26</td>
<td>LRCK3</td>
<td>I/O</td>
<td>LR チャネル選択 3 ピン</td>
</tr>
<tr>
<td>27</td>
<td>JX1</td>
<td>I</td>
<td>外部条件ジャンプ入力 1 ピン</td>
</tr>
<tr>
<td>28</td>
<td>LRCK4</td>
<td>I/O</td>
<td>LR チャネル選択 4 ピン</td>
</tr>
<tr>
<td>29</td>
<td>BICK4</td>
<td>I/O</td>
<td>シリアルビットクロック 4 ピン</td>
</tr>
<tr>
<td>30</td>
<td>TVDD2</td>
<td>-</td>
<td>デジタル IO 電源 2 ピン 1.7～3.6V (typ.3.3V)</td>
</tr>
<tr>
<td>31</td>
<td>DVSS2</td>
<td>-</td>
<td>デジタルグランド 2 ピン 0V (基板電位)</td>
</tr>
<tr>
<td>32</td>
<td>SDOUT3</td>
<td>O</td>
<td>シリアルディジタルデータ出力 3 ピン</td>
</tr>
<tr>
<td>33</td>
<td>STO</td>
<td>O</td>
<td>ステータス信号出力ピン</td>
</tr>
<tr>
<td>34</td>
<td>GPO1</td>
<td>O</td>
<td>プログラマブル出力 1 ピン (DSP1 の GPO1 出力)</td>
</tr>
<tr>
<td>35</td>
<td>RDY</td>
<td>O</td>
<td>RDY 信号出力ピン</td>
</tr>
<tr>
<td>36</td>
<td>SDOUT4</td>
<td>O</td>
<td>シリアルディジタルデータ出力 4 ピン</td>
</tr>
<tr>
<td>37</td>
<td>CSN</td>
<td>I</td>
<td>SPI モード</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPI インターフェース用のチップセレクト N ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・パワーダウン状態、またはマイコンとのインタフェースを行わない時は“H”にしてください。</td>
</tr>
<tr>
<td></td>
<td>SO</td>
<td>O</td>
<td>SPI インターフェース用シリアルデータ出力ピン</td>
</tr>
<tr>
<td></td>
<td>SDA</td>
<td>I/O</td>
<td>SPI インターフェース用シリアルデータ入力ピン</td>
</tr>
<tr>
<td></td>
<td>SCLK</td>
<td>I</td>
<td>SPI インターフェース用シリアルデータクロック入力ピン</td>
</tr>
<tr>
<td></td>
<td>SCL</td>
<td>I</td>
<td>SPI インターフェース用シリアルデータクロック入力ピン</td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>I</td>
<td>SPI インターフェース用シリアルデータ入力ピン</td>
</tr>
<tr>
<td></td>
<td>I2CFIL</td>
<td>I</td>
<td>I2C インターフェースモード選択入力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・I2CFIL = “L”固定: Fast Mode (400kHz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・I2CFIL = “H”固定: Fast Mode Plus (1MHz) (TVDD2 固定にしてください。)</td>
</tr>
<tr>
<td>38</td>
<td>PDN</td>
<td>I</td>
<td>パワーダウン N ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・AK7738A をパワーダウンするのに使用します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・電源立ち上げ時は“L”にしてください。</td>
</tr>
<tr>
<td>39</td>
<td>AVDRV</td>
<td>O</td>
<td>LDO 出力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・2.2uF のセラミックコンデンサを DVSS3 との間に接続してください。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・外部回路には使用しないで下さい。</td>
</tr>
<tr>
<td>40</td>
<td>LVDD</td>
<td>-</td>
<td>デジタルコア電源ピン 3.0～3.6V (typ.3.3V)</td>
</tr>
<tr>
<td>41</td>
<td>DVSS3</td>
<td>-</td>
<td>デジタルグランド 3 ピン 0V (基板電位)</td>
</tr>
<tr>
<td>No.</td>
<td>Pin Name</td>
<td>I/O</td>
<td>Function</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>42</td>
<td>AINMN</td>
<td>I</td>
<td>ADCM 差動反転入力ピン</td>
</tr>
<tr>
<td>43</td>
<td>AINMP</td>
<td>I</td>
<td>ADCM 差動非反転入力ピン</td>
</tr>
<tr>
<td></td>
<td>AINM</td>
<td>I</td>
<td>ADCM シングルエンド入力ピン</td>
</tr>
<tr>
<td>44</td>
<td>AIN5R</td>
<td>I</td>
<td>ADC2 Rch 疑似差動入力 5 ピン</td>
</tr>
<tr>
<td>45</td>
<td>GNDIN5</td>
<td>I</td>
<td>ADC2 疑似差動グランド入力 5 ピン</td>
</tr>
<tr>
<td>46</td>
<td>AIN5L</td>
<td>I</td>
<td>ADC2 Lch 疑似差動入力 5 ピン</td>
</tr>
<tr>
<td>47</td>
<td>AIN2RN</td>
<td>I</td>
<td>ADC2 Rch 差動反転入力 2 ピン</td>
</tr>
<tr>
<td></td>
<td>AIN4R</td>
<td>I</td>
<td>ADC2 Rch 差動入力 4 ピン</td>
</tr>
<tr>
<td>48</td>
<td>AIN2RP</td>
<td>I</td>
<td>ADC2 Rch 差動非反転入力 2 ピン</td>
</tr>
<tr>
<td></td>
<td>AIN3R</td>
<td>I</td>
<td>ADC2 Rch シングルエンド入力 3 ピン</td>
</tr>
<tr>
<td>49</td>
<td>AIN2LN</td>
<td>I</td>
<td>ADC2 Lch 差動反転入力 2 ピン</td>
</tr>
<tr>
<td></td>
<td>AIN4L</td>
<td>I</td>
<td>ADC2 Lch シングルエンド入力 4 ピン</td>
</tr>
<tr>
<td>50</td>
<td>AIN2LP</td>
<td>I</td>
<td>ADC2 Lch 差動非反転入力 2 ピン</td>
</tr>
<tr>
<td></td>
<td>AIN3L</td>
<td>I</td>
<td>ADC2 Lch シングルエンド入力 3 ピン</td>
</tr>
<tr>
<td>51</td>
<td>INN2</td>
<td>I</td>
<td>ADC1 Rch 差動反転入力 2 ピン</td>
</tr>
<tr>
<td>52</td>
<td>AIN1R</td>
<td>I</td>
<td>ADC1 Rch シングルエンド入力 1 ピン</td>
</tr>
<tr>
<td></td>
<td>INP2</td>
<td>I</td>
<td>ADC1 Rch 差動非反転入力 2 ピン</td>
</tr>
<tr>
<td>53</td>
<td>INN1</td>
<td>I</td>
<td>ADC1 Lch 差動反転入力 1 ピン</td>
</tr>
<tr>
<td>54</td>
<td>AIN1L</td>
<td>I</td>
<td>ADC1 Lch シングルエンド入力 1 ピン</td>
</tr>
<tr>
<td></td>
<td>INP1</td>
<td>I</td>
<td>ADC1 Lch 差動非反転入力 1 ピン</td>
</tr>
<tr>
<td>55</td>
<td>MPREF</td>
<td>O</td>
<td>マイクパワー電源 リップルフィルタピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・1uFのセラミックコンデンサを AVSS との間に接続してください。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・外部回路には使用しないで下さい。</td>
</tr>
<tr>
<td>56</td>
<td>MPWR1</td>
<td>O</td>
<td>マイク用電源出力 1 ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・パワーダウン時の出力は“Hi-Z”です。</td>
</tr>
<tr>
<td>57</td>
<td>MPWR2</td>
<td>O</td>
<td>マイク用電源出力 2 ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・パワーダウン時の出力は“Hi-Z”です。</td>
</tr>
<tr>
<td>58</td>
<td>AVDD</td>
<td>-</td>
<td>アナログ電源ピン 3.0〜3.6V (typ.3.3V)</td>
</tr>
<tr>
<td>59</td>
<td>AVSS</td>
<td>-</td>
<td>アナロググランドピン 0V (基板電位)</td>
</tr>
<tr>
<td>60</td>
<td>VCOM</td>
<td>O</td>
<td>アナログ部コモン電圧出力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・2.2uFのセラミックコンデンサを AVSS との間に接続してください。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・外部回路には使用しないで下さい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・パワーダウン時の出力は“L”です。</td>
</tr>
<tr>
<td>61</td>
<td>VREFH</td>
<td>I</td>
<td>アナログハイレベルリファレンス電圧入力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・AVDD と接続してください。</td>
</tr>
<tr>
<td>62</td>
<td>VREFL</td>
<td>I</td>
<td>アナログローレベルリファレンス電圧入力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・AVSS と接続してください。</td>
</tr>
<tr>
<td>63</td>
<td>AOUT1R</td>
<td>O</td>
<td>DAC1 Rch アナログ出力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・パワーダウン時の出力は“Hi-Z”です。</td>
</tr>
<tr>
<td>64</td>
<td>AOUT1L</td>
<td>O</td>
<td>DAC1 Lch アナログ出力ピン</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・パワーダウン時の出力は“Hi-Z”です。</td>
</tr>
</tbody>
</table>
■ 使用しないピンの処理について

使用しない入出力ピンは下記の設定を行い、適切に処理してください。

<table>
<thead>
<tr>
<th>Classification</th>
<th>Pin Name</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>MPREF, MPWR1, MPWR2, AIN1L/INP1, INN1, AIN1R/INP2, INN2, AIN2LP/AIN3L, AIN2LN/AIN4L, AIN2RP/AIN3R, AIN2RN/AIN4R, AIN5L, GNDIN5, AIN5R, AINMP/AINM, AINMN, AOUT1L, AOUT1R, AOUT2L, AOUT2R</td>
<td>オープン</td>
</tr>
<tr>
<td>Digital</td>
<td>CLK0, XTO, SDOUT1, SDOUT2/GPO0, SDOUT3/GPO1, STO/PRDY/SDOUT4, SDOUT5/GPO2, SDOUT6/DIT/GPO3</td>
<td>オープン</td>
</tr>
</tbody>
</table>

Table 1. 使用しない入力ピンの処理

Note 2. LRCK1, BICK1, LRCK2, BICK2, LRCK3/JX2, BICK3/JX3, LRCK4, BICK4, LRCK5, BICK5 pin を使用しない場合、DVSS1～3に接続することを薦めますが、プルダウン抵抗付きピンのため、オープンにも問題ありません。

■ プルダウン抵抗付ピンの状態

I/O pinの場合、パワーダウン状態時とパワーダウン状態解除時、プルダウン抵抗の状態が異なります。

<table>
<thead>
<tr>
<th>No</th>
<th>Pin Name</th>
<th>I/O</th>
<th>パワーダウン状態</th>
<th>パワーダウン状態解除</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PDN pin = “L”</td>
<td>PDN pin = “H”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I/O pin = Input設定時)</td>
<td>(I/O pin = Output設定時)</td>
</tr>
<tr>
<td>3</td>
<td>TEST1</td>
<td>I</td>
<td>プルダウン(25kΩ)</td>
<td>プルダウン(25kΩ)</td>
</tr>
<tr>
<td>4</td>
<td>LRCK5</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>5</td>
<td>SDOUT5/GPO2</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>6</td>
<td>BICK5</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>7</td>
<td>CLKO</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>8</td>
<td>SDOUT6/DIT/GPO3</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>16</td>
<td>LRCK2</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>17</td>
<td>BICK2</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>18</td>
<td>SDOUT2/GPO0</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>20</td>
<td>LRCK1</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>21</td>
<td>BICK1</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>22</td>
<td>SDOUT1</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>26</td>
<td>LRCK3/JX2</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>27</td>
<td>BICK3/JX3</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>28</td>
<td>LRCK4</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>29</td>
<td>BICK4</td>
<td>I/O</td>
<td>プルダウン(50kΩ)</td>
<td>プルダウン(46kΩ)</td>
</tr>
<tr>
<td>32</td>
<td>SDOUT3/GPO1</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>33</td>
<td>STO/PRDY/SDOUT4</td>
<td>O</td>
<td>プルダウン(50kΩ)</td>
<td>出力</td>
</tr>
<tr>
<td>39</td>
<td>AVDRV</td>
<td>O</td>
<td>プルダウン(70Ω)</td>
<td>出力</td>
</tr>
</tbody>
</table>

Table 2. プルダウン抵抗付ピンの状態
パワーダウン時、出力ピンの状態

<table>
<thead>
<tr>
<th>No</th>
<th>Pin Name</th>
<th>I/O</th>
<th>パワーダウン時の状態</th>
<th>No</th>
<th>Pin Name</th>
<th>I/O</th>
<th>パワーダウン時の状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>VCOM</td>
<td>O</td>
<td>“L”出力</td>
<td>35</td>
<td>SO/SDA</td>
<td>I/O</td>
<td>“Hi-Z”出力</td>
</tr>
<tr>
<td>55</td>
<td>MPREF</td>
<td>O</td>
<td>“L”出力</td>
<td>22</td>
<td>SDOUT1</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>56</td>
<td>MPWR1</td>
<td>O</td>
<td>“Hi-Z”出力</td>
<td>18</td>
<td>SDOUT2/GPO0</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>57</td>
<td>MPWR2</td>
<td>O</td>
<td>“Hi-Z”出力</td>
<td>32</td>
<td>SDOUT3/GPO1</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>64</td>
<td>AOUT1L</td>
<td>O</td>
<td>“Hi-Z”出力</td>
<td>33</td>
<td>STO/RDY/SDOUT4</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>63</td>
<td>AOUT1R</td>
<td>O</td>
<td>“Hi-Z”出力</td>
<td>5</td>
<td>SDOUT5/GPO2</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>2</td>
<td>AOUT2L</td>
<td>O</td>
<td>“Hi-Z”出力</td>
<td>8</td>
<td>SDOUT6/DIT/GPO3</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>1</td>
<td>AOUT2R</td>
<td>O</td>
<td>“Hi-Z”出力</td>
<td>7</td>
<td>CLKO</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>20</td>
<td>LRCK1</td>
<td>I/O</td>
<td>Input</td>
<td>11</td>
<td>XTO</td>
<td>O</td>
<td>“H”出力</td>
</tr>
<tr>
<td>16</td>
<td>LRCK2</td>
<td>I/O</td>
<td>Input</td>
<td>39</td>
<td>AVDRV</td>
<td>O</td>
<td>“L”出力 (プルダウン)</td>
</tr>
<tr>
<td>17</td>
<td>BICK2</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>LRCK3/JX2</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>BICK3/JX3</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>LRCK4</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>BICK4</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>LRCK5</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BICK5</td>
<td>I/O</td>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. パワーダウン時、出力ピンの状態

各ディジタルピンとディジタル電源の関連

<table>
<thead>
<tr>
<th>電源ピン</th>
<th>デジタルピン</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVDD1</td>
<td>SDIN1, SDIN2/JX0, SDOUT1, SDOUT2/GPO0, LRCK1, BICK1, LRCK2, BICK2</td>
</tr>
<tr>
<td>TVDD2</td>
<td>SDIN3/JX1, SDIN4, SDOUT3/GPO1, STO/RYDY/SDOUT4, LRCK3/JX2, BICK3/JX3, LRCK4, BICK4, PDN, SCLK/SCL, SO/SDA, CSN, SI/I2CFIL</td>
</tr>
<tr>
<td>VDD33</td>
<td>SDIN5/JX0, SDIN6, SDOUT5/GPO2, SDOUT6/DIT/GPO3, LRCK5, BICK5, CLKO, TESTI, XTO, XTI</td>
</tr>
</tbody>
</table>

Table 4. ディジタルピンとディジタル電源の関連
6. 絶対最大定格

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源電圧</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog</td>
<td>AVDD</td>
<td>-0.3</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>Digital1(Core)</td>
<td>LVDD</td>
<td>-0.3</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>Digital2(I/F)</td>
<td>TVDD1</td>
<td>-0.3</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>Digital3(I/F)</td>
<td>TVDD2</td>
<td>-0.3</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td>Digital4(I/F)</td>
<td>VDD33</td>
<td>-0.3</td>
<td>4.3</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference (AVSS, DVSS1 ~ 3)</td>
<td>ΔGND</td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
</tbody>
</table>

| 入力電流(除: 電源ピン) | IIN | — | ±10 mA |

アナログ入力電圧	VINA	—	(AVDD+0.3) or 4.3 V
デジタル入力電圧	VIND1	—	(TVDD1+0.3) or 4.3 V
デジタル入力電圧	VIND2	—	(TVDD2+0.3) or 4.3 V
デジタル入力電圧	VIND3	—	(VDD33+0.3) or 4.3 V

| 動作周囲温度 | Ta | -40 °C | 85 °C |
| 保存温度 | Tstg | -65 °C | 150 °C |

Note 3. すべての電圧はグランドに対する値です。AVSS, DVSS1 ~ DVSS3は同電位にして下さい。

Note 4. アナログ入力電圧のmax値は、(AVDD+0.3)Vまたは4.3Vのどちらか低い方です。

Note 5. SDIN1, SDIN2/JX0, LRCK1, BICK1, LRCK2, BICK2 pinのデジタル入力電圧のmax値は、(TVDD1+0.3)Vまたは4.3Vのどちらか低い方です。

Note 6. SDIN3/JX1, SDIN4, LRCK3/JX2, BICK3/JX3, LRCK4, BICK4, PDN, SCLK/SCL, SO/SDA, CSN, SI/I2CFIL pinのデジタル入力電圧のmax値は、(TVDD2+0.3)Vまたは4.3Vのどちらか低い方です。

Note 7. SDIN5/JX0, SDIN6, LRCK5, BICK5, TESTI, XTI pinのデジタル入力電圧のmax値は、(VDD33+0.3)Vまたは4.3Vのどちらか低い方です。

注意: この値を超えた条件で使用した場合、デバイスを破壊することがあります。また通常の動作は保証されません。

7. 推奨動作条件

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源電圧</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog</td>
<td>AVDD</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Digital1(Core)</td>
<td>LVDD</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Digital2(I/F)</td>
<td>TVDD1</td>
<td>1.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Digital3(I/F)</td>
<td>TVDD2</td>
<td>1.7</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Digital4(I/F)</td>
<td>VDD33</td>
<td>3.0</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
</tbody>
</table>

Note 8. AVDD, LVDD, TVDD1, TVDD2, VDD33の立ち上げ順の規定はありません。PDN pin = “L”の状態で各電源を立ち上げ、全ての電源が立ち上がった後、PDN pin = “H”にしてください。

Note 9. 周辺デバイスが電源OFFの状態でAK7738Aの電源をOFFにしてください。また、I2Cインタフェースを使用する場合、SDA, SCL pinのプルアップ抵抗の接続先はTVDD2以下にして下さい。

注意: 本データシートに記載されている条件以外のご使用に関しては、当社では責任いかねますので十分ご注意下さい。
8. 電気的特性

■ アナログ特性

1. MIC AMPゲイン
(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD3=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力インピーダンス</td>
<td>14</td>
<td>20</td>
<td>26</td>
<td>kΩ</td>
</tr>
<tr>
<td>MGNL[3:0]bits=0h, MGNR[3:0]bits=0h</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=1h, MGNR[3:0]bits=1h</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=2h, MGNR[3:0]bits=2h</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=3h, MGNR[3:0]bits=3h</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=4h, MGNR[3:0]bits=4h</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=5h, MGNR[3:0]bits=5h</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=6h, MGNR[3:0]bits=6h</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=7h, MGNR[3:0]bits=7h</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=8h, MGNR[3:0]bits=8h</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=9h, MGNR[3:0]bits=9h</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>dB</td>
</tr>
<tr>
<td>MGNL[3:0]bits=Ah, MGNR[3:0]bits=Ah</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=Ch, MGNR[3:0]bits=Ch</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=Dh, MGNR[3:0]bits=Dh</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=Eh, MGNR[3:0]bits=Eh</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>MGNL[3:0]bits=Fh, MGNR[3:0]bits=Fh</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

2. MIC Bias出力
(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD3=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 測定帯域=20Hz ~ 20kHz)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>出力電圧</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>負荷抵抗</td>
<td>2</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>負荷容量</td>
<td></td>
<td></td>
<td>30</td>
<td>pF</td>
</tr>
<tr>
<td>出力ノイズ(A-weighted)</td>
<td>-114</td>
<td>-108</td>
<td></td>
<td>dBV</td>
</tr>
</tbody>
</table>

MIC Bias

MIC AMP
3. MIC AMP + ADC1
（Ta=25℃; AVDD=LVDD=TVDD1=TVDD2=VDD3=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 信号周波数=1kHz; 24bit Data; BICK=64fs; fs=48kHz時、測定周波数=20Hz ~ 20kHz; fs=96kHzとfs=192kHz時、測定周波数=20Hz ~ 40kHz; 差動入力）

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>分解能</td>
<td>24</td>
<td></td>
<td></td>
<td>bit</td>
</tr>
<tr>
<td>入力フルスケール電圧(Note 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>差動入力 (Note 11, Note 15)</td>
<td>±2.1</td>
<td>±2.3</td>
<td>±2.5</td>
<td>Vpp</td>
</tr>
<tr>
<td>差動入力 (Note 12, Note 15)</td>
<td>±0.264</td>
<td>±0.290</td>
<td>±0.315</td>
<td>Vpp</td>
</tr>
<tr>
<td>シングルエンド入力 (Note 11)</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>シングルエンド入力 (Note 12)</td>
<td>0.264</td>
<td>0.290</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td>S/(N+D) (-1dBFS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=48kHz (Note 11)</td>
<td>80</td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>fs=48kHz (Note 12)</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=96kHz (Note 11)</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=96kHz (Note 12)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=192kHz (Note 11, Note 14)</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=192kHz (Note 12, Note 14)</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (-60dBFS)</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>fs=48kHz (A-weighted) (Note 11)</td>
<td>94</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=48kHz (A-weighted) (Note 12)</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=96kHz (Note 11)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=96kHz (Note 12)</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=192kHz (Note 11)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=192kHz (Note 12)</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>fs=48kHz (A-weighted) (Note 11)</td>
<td>94</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=48kHz (A-weighted) (Note 12)</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=96kHz (Note 11)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=96kHz (Note 12)</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=192kHz (Note 11)</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fs=192kHz (Note 12)</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>チャネル間アイソレーション (Note 10)</td>
<td>90</td>
<td>105</td>
<td>0.3</td>
<td>dB</td>
</tr>
<tr>
<td>チャネル間ゲインミスマッチ</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 10. -1dBFSの信号を入力した場合のLch-Rch間のアイソレーションです。
Note 11. MGNL/R[3:0] bits = 0h (0dB)。入力フルスケール電圧はAVDDに比例(0.7×AVDD)します。
Note 12. MGNL/R[3:0] bits = 9h (+18dB)。入力フルスケール電圧はAVDDに比例(0.088×AVDD)します。
Note 13. fs=192kHz, 尚且つADC1のデジタルフィルタをSlow Roll-OffフィルタまたはShort Delay Slow Roll-Offフィルタに設定した場合、-0.7dBFSが出力されます。
Note 14. fs=192kHz, 尚且つADC1のデジタルフィルタをSlow Roll-OffフィルタまたはShort Delay Slow Roll-Offフィルタに設定した場合の-1.6dBFS入力時の特性値です。
Note 15. 差動入力モードを使う場合、片側だけに信号を入力するような疑似差動信号入力は禁止です。
4. ADC2
(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD3=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 信号周波数=1kHz; 24bit Data; BICK=64fs; fs=48kHz時、測定周波数=20Hz ~ 20kHz; fs=96kHzとfs=192kHz時、測定周波数=20Hz ~ 40kHz; 差動入力)

<table>
<thead>
<tr>
<th>ADC2</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>分解能</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>bit</td>
</tr>
<tr>
<td></td>
<td>入力インピーダンス</td>
<td>14</td>
<td>20</td>
<td>24</td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td>入力フルスケーレル電圧 (Note 19)</td>
<td>±2.1</td>
<td>±2.3</td>
<td>±2.5</td>
<td>Vpp</td>
</tr>
<tr>
<td></td>
<td>差動入力 (Note 16)</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td>Vpp</td>
</tr>
<tr>
<td></td>
<td>シングルエンド入力 (Note 17)</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td>Vpp</td>
</tr>
<tr>
<td></td>
<td>疑似差動入力 (Note 18)</td>
<td>2.1</td>
<td>2.3</td>
<td>2.5</td>
<td>Vpp</td>
</tr>
<tr>
<td></td>
<td>S/(N+D) (-1dBFS) fs=48kHz</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>Dynamic Range (-60dBFS) fs=48kHz (A-weighted)</td>
<td>94</td>
<td>102</td>
<td>102</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>S/N fs=48kHz (A-weighted)</td>
<td>94</td>
<td>102</td>
<td>102</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>チャネル間アイソレーション (Note 10)</td>
<td>90</td>
<td>105</td>
<td>105</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>チャネル間ゲインミスマッチ</td>
<td>0.0</td>
<td>0.3</td>
<td>0.3</td>
<td>dB</td>
</tr>
</tbody>
</table>

Note 16. 対象となる入力ピンはAIN2L, AIN2N, AIN2RP, AIN2RNです。差動入力モードを使う場合、片側だけに信号を入力するような疑似差動信号入力は禁止です。

Note 17. 対象となる入力ピンはAIN3L, AIN3R, AIN4L, AIN4Rです。

Note 18. 対象となる入力ピンはAIN5L, AIN5Rです。

Note 19. fs=192kHz、尚且つADC2のディジタルフィルタをSlow Roll-OffフィルタまたはShort Delay Slow Roll-Offフィルタに設定した場合、-0.7dBFSが出力されます。

Note 20. fs=192kHz、尚且つADC2のディジタルフィルタをSlow Roll-OffフィルタまたはShort Delay Slow Roll-Offフィルタに設定した場合の-1.6dBFS入力時の特性値です。
5. ADCM

(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 信号周波数=1kHz; 24bit Data; BICK=64fs; fs=48kHz時、測定周波数=20Hz ~ 20kHz; fs=96kHzとfs=192kHz時、測定周波数=20Hz ~ 40kHz; 差動入力)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>分解能</td>
<td>24</td>
<td>bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>入力インピーダンス</td>
<td>14</td>
<td>20</td>
<td>26</td>
<td>kΩ</td>
</tr>
<tr>
<td>入力フルスケール電圧 (Note 23)</td>
<td>±2.1</td>
<td>±2.3</td>
<td>±2.5</td>
<td>Vpp</td>
</tr>
<tr>
<td>S/(N+D) (-1dBFS)</td>
<td>fs=48kHz</td>
<td>80</td>
<td>90</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (-60dBFS)</td>
<td>fs=48kHz (A-weighted)</td>
<td>94</td>
<td>102</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>fs=48kHz (A-weighted)</td>
<td>94</td>
<td>102</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 21. 対象となる入力ピンはAINMP、AINMNです。差動入力モードを使う場合、片側だけに信号を入力するような疑似差動信号入力は禁止です。

Note 22. 対象となる入力ピンはAINMです。

Note 23. fs=192kHz、尚且つADCMのディジタルフィルタをSlow Roll-OffフィルタまたはShort Delay Slow Roll-Offフィルタに設定した場合、-0.7dBFSが出力されます。

Note 24. fs=192kHz、尚且つADCMのディジタルフィルタをSlow Roll-OffフィルタまたはShort Delay Slow Roll-Offフィルタに設定した場合の-1.6dBFS入力時の特性値です。

6. DAC

(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 信号周波数=1kHz; 32bit Data; BICK=64fs; fs=48kHz時、測定周波数=20Hz ~ 20kHz; fs=96kHzとfs=192kHz時、測定周波数=20Hz ~ 40kHz)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>分解能</td>
<td>32</td>
<td>Bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出力電圧 (Note 25)</td>
<td>2.55</td>
<td>2.83</td>
<td>3.11</td>
<td>Vpp</td>
</tr>
<tr>
<td>S/(N+D) (0dBFS)</td>
<td>fs=48kHz</td>
<td>80</td>
<td>91</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (-60dBFS)</td>
<td>fs=48kHz (A-weighted)</td>
<td>100</td>
<td>108</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>fs=48kHz (A-weighted)</td>
<td>100</td>
<td>108</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>fs=96kHz</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fs=192kHz</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>チャネル間アイソレーション (fin=1kHz) (Note 26)</td>
<td>90</td>
<td>110</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>チャネル間ギャインミスマッチ</td>
<td>0.0</td>
<td>0.7</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>負荷抵抗 (Note 27)</td>
<td>(Note 27)</td>
<td>10</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>負荷容量</td>
<td>30</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 25. フルスケール出力電圧です。出力電圧はAVDDに比例 (AVDD x 0.86) します。

Note 26. 0dBFSの信号を入力した場合のAOUT1L, AOUT1R間、AOUT2L, AOUT2R間のアイソレーションです。

Note 27. AC負荷に対して。
7. SRC

(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 信号周波数=1kHz; 24bit Data; 測定周波数=20Hz ~ FSO/2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 Bit</td>
</tr>
<tr>
<td>Input Sample Rate</td>
<td>FSI</td>
<td>8</td>
<td>192</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Output Sample Rate</td>
<td>FSO</td>
<td>8</td>
<td>192</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>THD+N (Input=1kHz, 0dBFS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=192kHz/48kHz</td>
<td>-122</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=44.1kHz/48kHz</td>
<td>-125</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=48kHz/88.2kHz</td>
<td>-122</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=48kHz/96kHz</td>
<td>-133</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=44.1kHz/96kHz</td>
<td>-116</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=48kHz/192kHz</td>
<td>-133</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=8kHz/48kHz</td>
<td>-130</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=24kHz/32kHz</td>
<td>-95</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=16kHz/24kHz</td>
<td>-98</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=24kHz/44.1kHz</td>
<td>-78</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=16kHz/44.1kHz</td>
<td>-69</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=8kHz/32kHz</td>
<td>-130</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (Input=1kHz, -60dBFS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=192kHz/48kHz</td>
<td>132</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=44.1kHz/48kHz</td>
<td>136</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=48kHz/88.2kHz</td>
<td>135</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=48kHz/96kHz</td>
<td>136</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=44.1kHz/96kHz</td>
<td>136</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=48kHz/192kHz</td>
<td>136</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=8kHz/48kHz</td>
<td>130</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=24kHz/32kHz</td>
<td>132</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=16kHz/24kHz</td>
<td>135</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=24kHz/44.1kHz</td>
<td>132</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=16kHz/44.1kHz</td>
<td>128</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=8kHz/32kHz</td>
<td>130</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (Input=1kHz, -60dBFS, A-weighted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSO/FSI=44.1kHz/48kHz</td>
<td>137</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio between Input and Output Sample Rate</td>
<td>FSO/FSI</td>
<td>0.167</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Note 28. SRC1–SRC4のうち、動作するSRCのFSIの周波数の合計が384kHz以下になるように設定してください。例えば、FSIの周波数が96kHzの場合、SRCは4個同時に動作できますが、FSIの周波数が192kHzの場合、同時に2個までしか使えません。
8. FSCONV
(Ta=25°C; AVDD=LVDD=TVDD1=TVDD2=VDD33=3.3V; AVSS=DVSS1=DVSS2=DVSS3=0V; 信号周波数=1kHz; 24bit Data; 測定周波数=20Hz ~ FSO/2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td>24</td>
<td>bit</td>
<td></td>
</tr>
<tr>
<td>Input Sample Rate</td>
<td>FSI</td>
<td>44.1</td>
<td>48</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Output Sample Rate</td>
<td>FSO</td>
<td>8</td>
<td>16</td>
<td>kHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N (Input=1kHz, 0dBFS)</td>
<td>FSO/FSI=16kHz/48kHz</td>
<td>-114</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSO/FSI=16kHz/44.1kHz</td>
<td>-95</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSO/FSI=8kHz/48kHz</td>
<td>-115</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSO/FSI=8kHz/44.1kHz</td>
<td>-97</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (Input=1kHz, -60dBFS)</td>
<td>FSO/FSI=16kHz/48kHz</td>
<td>114</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSO/FSI=16kHz/44.1kHz</td>
<td>114</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSO/FSI=8kHz/48kHz</td>
<td>114</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSO/FSI=8kHz/44.1kHz</td>
<td>114</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Range (Input=1kHz, -60dBFS, A-weighted)</td>
<td>FSO/FSI=8kHz/48kHz</td>
<td>117</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio between Input and Output Sample Rate</td>
<td>FSO/FSI</td>
<td>0.167</td>
<td></td>
<td>0.363</td>
<td></td>
</tr>
</tbody>
</table>

■ 消費電流
(Ta=25°C; AVDD=3.0~3.6V(typ=3.3V, max=3.6V); LVDD=3.0~3.6V(typ=3.3V, max=3.6V); TVDD1=1.7~3.6V(typ=3.3V, max=3.6V); TVDD2=1.7~3.6V(typ=3.3V, max=3.6V); VDD33=3.0~3.6V(typ=3.3V, max=3.6V); AVSS=DVSS1=DVSS2=DVSS3=0V; fs=192kHz; BICK=64fs; SDOUT1~6/LRCK1~5/BICK1~5=Output; C1=20pF)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作時消費電流 (Note 29) (PDN pin= “H”)</td>
<td>AVDD</td>
<td>26</td>
<td>37</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVDD</td>
<td>70</td>
<td>140</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVDD1</td>
<td>1.6</td>
<td>2.4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVDD2</td>
<td>1.6</td>
<td>2.4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD33</td>
<td>4</td>
<td>6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>パワーダウン時消費電流 (PDN pin= “L”)</td>
<td>AVDD</td>
<td>0.01</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LVDD</td>
<td>0.01</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVDD1</td>
<td>0.01</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVDD2</td>
<td>0.01</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD33</td>
<td>0.01</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 29. LVDDの消費電流値は使用周波数およびDSPプログラム内容によって変化します。
1. ADC部

(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V)

1-1 Sharp Roll-Off Filter (ADSD bit = “0”, ADSL bit = “0”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>0dB ~ -0.06dB</td>
<td>PB 0</td>
<td>22.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB 24.4</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB 27.8</td>
<td></td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA 85</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~20kHz</td>
<td>ΔGD 0</td>
<td></td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD 19</td>
<td></td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter (HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR 1.0</td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>0dB ~ -0.06dB</td>
<td>PB 0</td>
<td>44.2</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB 48.7</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB 55.6</td>
<td></td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA 85</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD 0</td>
<td></td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD 19</td>
<td></td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter (HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR 1.9</td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>0dB ~ -0.04dB</td>
<td>PB 0</td>
<td>83.7</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB 100.1</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB 122.9</td>
<td></td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA 85</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD 0</td>
<td></td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD 15</td>
<td></td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter (HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR 3.9</td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>
1-2 Slow Roll-Off Filter (ADSD bit = “0”, ADSL bit = “1”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>0dB ~ -0.074dB</td>
<td>PB</td>
<td>0</td>
<td>12.5</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>21.9</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td></td>
<td>SB</td>
<td>36.5</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td></td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~20kHz</td>
<td>ΔGD</td>
<td>0</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td></td>
<td>GD</td>
<td>7</td>
<td></td>
<td>1/fs</td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR</td>
<td>1.0</td>
<td></td>
<td>Hz</td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>0dB ~ -0.074dB</td>
<td>PB</td>
<td>0</td>
<td>25</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>43.7</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td></td>
<td>SB</td>
<td>73</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td></td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD</td>
<td>0</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td></td>
<td>GD</td>
<td>7</td>
<td></td>
<td>1/fs</td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR</td>
<td>1.9</td>
<td></td>
<td>Hz</td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>0dB ~ -0.7dB</td>
<td>PB</td>
<td>0</td>
<td>49.9</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>79.9</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td></td>
<td>SB</td>
<td>146</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td></td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD</td>
<td>0</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td></td>
<td>GD</td>
<td>8</td>
<td></td>
<td>1/fs</td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR</td>
<td>3.88</td>
<td></td>
<td>Hz</td>
</tr>
</tbody>
</table>
1-3 Short Delay Sharp Roll-Off Filter (ADSD bit = “1”, ADSL bit = “0”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>PB</td>
<td>0</td>
<td>22.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>24.4</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB</td>
<td>27.8</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~20kHz</td>
<td>ΔGD</td>
<td>2.6</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD</td>
<td>5</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter (HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>FR</td>
<td>-3.0dB</td>
<td>1.0</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>PB</td>
<td>0</td>
<td>44.2</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>48.7</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB</td>
<td>55.6</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD</td>
<td>2.6</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD</td>
<td>5</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter (HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>FR</td>
<td>-3.0dB</td>
<td>1.9</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>PB</td>
<td>0</td>
<td>83.7</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>100.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB</td>
<td>122.9</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD</td>
<td>0.2</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD</td>
<td>6</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter (HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>FR</td>
<td>-3.0dB</td>
<td>3.88</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>
1-4 Short Delay Slow Roll-Off Filter (ADSD bit = “1”, ADSL bit = “1”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>PB</td>
<td>0</td>
<td>12.5</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>21.9</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB</td>
<td>36.5</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~20kHz</td>
<td>ΔGD</td>
<td>2.6</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD</td>
<td>5</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR</td>
<td>1.0</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>PB</td>
<td>0</td>
<td>25</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>43.7</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB</td>
<td>73</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD</td>
<td>2.6</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD</td>
<td>5</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR</td>
<td>1.9</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td>PB</td>
<td>0</td>
<td>49.9</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>77.7</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 30)</td>
<td>SB</td>
<td>145.9</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>85</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~40kHz</td>
<td>ΔGD</td>
<td>0.5</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 31)</td>
<td>GD</td>
<td>6</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>-3.0dB</td>
<td>FR</td>
<td>3.88</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>
1-5 Voice Filter (AD1HF bit = “1”)

fs=16kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.5dB ~ 0.5dB</td>
<td>PB</td>
<td>0</td>
<td>6.3</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-6.0dB</td>
<td>PB</td>
<td>0</td>
<td>7.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband</td>
<td>SB</td>
<td>8.0</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuiation</td>
<td>SA</td>
<td>60</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay Distortion : 0Hz~8kHz</td>
<td>ΔGD</td>
<td>0</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Group Delay</td>
<td>GD</td>
<td>20</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>ADC Digital Filter(HPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td>FR</td>
<td>-3.0dB</td>
<td>0.3</td>
<td>Hz</td>
<td></td>
</tr>
</tbody>
</table>

Note 30. 各振幅特性の周波数はfs(サンプリングレート)に比例します。ハイパスフィルタの特性は含まれていません。

Note 31. ディジタルフィルタによる演算遅延で、ADC部はアナログ信号が入力されてから両チャネルの24bitデータが出力レジスタにセットされるまでの時間です。
2. DAC部
(Ta=25℃; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V;
AVSS=DVSS1=DVSS2=DVSS3=0V)

2-1 Sharp Roll-Off Filter (DASD bit = “0", DASL bit = “0")

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>22.2</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.08dB ~ +0.08dB</td>
<td>PB</td>
<td>-6.0</td>
<td>23.99</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.08</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>26.2</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>69.9</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>26.4</td>
<td></td>
<td></td>
<td>1/fs</td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 20kHz</td>
<td>FR</td>
<td>-0.20</td>
<td>0.10</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>44.4</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.08dB ~ +0.08dB</td>
<td>PB</td>
<td>-6.0</td>
<td>48.00</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.08</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>52.5</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>69.8</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>26.4</td>
<td></td>
<td></td>
<td>1/fs</td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 40kHz</td>
<td>FR</td>
<td>-0.50</td>
<td>0.10</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>88.8</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.08dB ~ +0.08dB</td>
<td>PB</td>
<td>-6.0</td>
<td>96.00</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.08</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>104.9</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>69.8</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>26.4</td>
<td></td>
<td></td>
<td>1/fs</td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 80kHz</td>
<td>FR</td>
<td>-2.00</td>
<td>0.00</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>
2-2 Slow Roll-Off Filter (DASD bit = “0”, DASL bit = “1”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>9.0</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>19.75</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>42.6</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation (Note 34)</td>
<td>SA</td>
<td>72.6</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>26.4</td>
<td></td>
<td>l/fs</td>
<td></td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 20kHz</td>
<td>FR</td>
<td>-3.75</td>
<td>-2.75</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>18.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>39.6</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>85.1</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation (Note 34)</td>
<td>SA</td>
<td>72.6</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>26.4</td>
<td></td>
<td>l/fs</td>
<td></td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 40kHz</td>
<td>FR</td>
<td>-4.25</td>
<td>-2.75</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>36.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>79.3</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>170.3</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation (Note 34)</td>
<td>SA</td>
<td>72.6</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>26.4</td>
<td></td>
<td>l/fs</td>
<td></td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 80kHz</td>
<td>FR</td>
<td>-5.00</td>
<td>-3.00</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>
2-3 Short Delay Sharp Roll-Off Filter (DASD bit = “1”, DASL bit = “0”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td>PB</td>
<td>0</td>
<td>22.0</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>-0.07dB to +0.07dB</td>
<td>PB</td>
<td>0</td>
<td>22.0</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>24.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>+0.07</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>26.2</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>56.6</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>5.9</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
</tbody>
</table>

Digital Filter + SCF

Frequency Response : 0Hz ~ 20kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td>FR</td>
<td>-0.20</td>
<td>0.10</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td>PB</td>
<td>0</td>
<td>44.3</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>-0.08dB to +0.08dB</td>
<td>PB</td>
<td>0</td>
<td>44.3</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>48.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.08</td>
<td>+0.08</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>52.5</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>56.4</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>5.9</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
</tbody>
</table>

Digital Filter + SCF

Frequency Response : 0Hz ~ 40kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td>FR</td>
<td>-0.50</td>
<td>0.10</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td>PB</td>
<td>0</td>
<td>88.6</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>-0.08dB to +0.08dB</td>
<td>PB</td>
<td>0</td>
<td>88.6</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>-6.0dB</td>
<td>PB</td>
<td>96.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.08</td>
<td>+0.08</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>104.9</td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation</td>
<td>SA</td>
<td>56.4</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>5.9</td>
<td></td>
<td>1/fs</td>
<td></td>
</tr>
</tbody>
</table>

Digital Filter + SCF

Frequency Response : 0Hz ~ 80kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td>FR</td>
<td>-2.00</td>
<td>0.00</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

017007316-J-00-PB

2017/06
2-4 Short Delay Slow Roll-Off Filter (DASD bit = “1”, DASL bit = “1”)

fs=48kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>10.1</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>20.24</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>43.0</td>
<td>20.24</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation (Note 34)</td>
<td>SA</td>
<td>74.9</td>
<td>20.24</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>5.2</td>
<td>20.24</td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 20kHz</td>
<td>FR</td>
<td>-3.50</td>
<td>-2.50</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

fs=96kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SLOW ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>20.3</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>40.50</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>86.0</td>
<td>40.50</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation (Note 34)</td>
<td>SA</td>
<td>74.9</td>
<td>40.50</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>5.2</td>
<td>40.50</td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 40kHz</td>
<td>FR</td>
<td>-4.00</td>
<td>-2.50</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

fs=192kHz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT DELAY SHARP ROLL-OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passband (Note 32)</td>
<td>PB</td>
<td>0</td>
<td>40.6</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Passband Ripple</td>
<td>PR</td>
<td>-0.07</td>
<td>81.00</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband (Note 32)</td>
<td>SB</td>
<td>172.0</td>
<td>81.00</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>Stopband Attenuation (Note 34)</td>
<td>SA</td>
<td>74.9</td>
<td>81.00</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Group Delay (Note 33)</td>
<td>GD</td>
<td>5.2</td>
<td>81.00</td>
<td>1/fs</td>
<td></td>
</tr>
<tr>
<td>Digital Filter + SCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response : 0Hz ~ 80kHz</td>
<td>FR</td>
<td>-4.75</td>
<td>-2.75</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Note 32. 各振幅特性の周波数はfs(サンプリングレート)に比例します。
Note 33. デジタルフィルタによる演算遅延で、16/24/32bitのインパルスデータが入力レジスタにセットされてからアナログ信号のピークが出力されるまでの時間です。
Note 34. Stopband Attenuation記載値の帯域はSBからfsまでです。
3. SRC部
(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD3=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V)

3-1 Audio Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>通過域</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.01dB</td>
<td>0.980 ≤ FSO/FSI ≤ 6.000</td>
<td>PB</td>
<td>0.4583FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.01dB</td>
<td>0.900 ≤ FSO/FSI < 0.990</td>
<td>PB</td>
<td>0.4167FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.01dB</td>
<td>0.533 ≤ FSO/FSI < 0.909</td>
<td>PB</td>
<td>0.2182FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.01dB</td>
<td>0.490 ≤ FSO/FSI < 0.539</td>
<td>PB</td>
<td>0.2177FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.01dB</td>
<td>0.450 ≤ FSO/FSI < 0.495</td>
<td>PB</td>
<td>0.1948FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.01dB</td>
<td>0.225 ≤ FSO/FSI < 0.455</td>
<td>PB</td>
<td>0.1312FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>-0.50dB</td>
<td>0.167 ≤ FSO/FSI < 0.227</td>
<td>PB</td>
<td>0.0658FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.980 ≤ FSO/FSI ≤ 6.000</td>
<td>SB</td>
<td>0.5417FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.900 ≤ FSO/FSI < 0.990</td>
<td>SB</td>
<td>0.5021FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.533 ≤ FSO/FSI < 0.909</td>
<td>SB</td>
<td>0.2974FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.490 ≤ FSO/FSI < 0.539</td>
<td>SB</td>
<td>0.2812FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.450 ≤ FSO/FSI < 0.495</td>
<td>SB</td>
<td>0.2604FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.225 ≤ FSO/FSI < 0.455</td>
<td>SB</td>
<td>0.1802FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.167 ≤ FSO/FSI < 0.227</td>
<td>SB</td>
<td>0.0970FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域リップル</td>
<td></td>
<td></td>
<td>±0.01</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.225 ≤ FSO/FSI ≤ 6.000</td>
<td>PR</td>
<td>±0.50</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.167 ≤ FSO/FSI < 0.227</td>
<td>PR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td></td>
<td>95.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.450 ≤ FSO/FSI ≤ 6.000</td>
<td>SA</td>
<td>95.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.167 ≤ FSO/FSI < 0.455</td>
<td>SA</td>
<td>85.0</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

群遅延 \((\text{Ts}=1/\text{fs})\) \(^{(\text{Note 35})}\)

| GD | 67 \((55/\text{FSI}+12/\text{FSO})\) | Ts |

Note 35. SRCプロック単体での値です。入力と出力の位相ずれがない時の、SRCへデータが入力された後、入力側LRCKの立ち上がりから、データを出力する前の出力側LRCK立ち上がりまでの時間を指します。
3-2 Voice Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>通過域</td>
<td>-0.01dB</td>
<td>0.980 FSO/FSI ≤ 6.000 PB</td>
<td>0.4583 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域</td>
<td>-0.01dB</td>
<td>0.900 FSO/FSI ≤ 0.990 PB</td>
<td>0.4167 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域</td>
<td>-0.50dB</td>
<td>0.711 FSO/FSI ≤ 0.910 PB</td>
<td>0.3420 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域</td>
<td>-0.50dB</td>
<td>0.653 FSO/FSI ≤ 0.718 PB</td>
<td>0.3007 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域</td>
<td>-0.50dB</td>
<td>0.450 FSO/FSI ≤ 0.660 PB</td>
<td>0.2230 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域</td>
<td>-0.50dB</td>
<td>0.225 FSO/FSI ≤ 0.330 PB</td>
<td>0.1018 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>通過域</td>
<td>-0.50dB</td>
<td>0.167 FSO/FSI ≤ 0.227 PB</td>
<td>0.0658 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.980 FSO/FSI ≤ 6.000 SB</td>
<td>0.5417 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.900 FSO/FSI ≤ 0.990 SB</td>
<td>0.5021 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.711 FSO/FSI ≤ 0.910 SB</td>
<td>0.3735 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.653 FSO/FSI ≤ 0.718 SB</td>
<td>0.3320 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.450 FSO/FSI ≤ 0.660 SB</td>
<td>0.2490 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.327 FSO/FSI ≤ 0.455 SB</td>
<td>0.1660 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.225 FSO/FSI ≤ 0.330 SB</td>
<td>0.1248 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.167 FSO/FSI ≤ 0.227 SB</td>
<td>0.0970 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>通過域リップル</td>
<td>0.900 FSO/FSI ≤ 6.000 PR</td>
<td>±0.01 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>通過域リップル</td>
<td>0.167 FSO/FSI ≤ 0.910 PR</td>
<td>±0.50 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td>0.900 FSO/FSI ≤ 6.000 SA</td>
<td>95.2 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td>0.653 FSO/FSI ≤ 0.909 SA</td>
<td>90.0 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td>0.450 FSO/FSI ≤ 0.660 SA</td>
<td>70.0 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td>0.167 FSO/FSI ≤ 0.455 SA</td>
<td>60.0 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

群遅延 (Ts=1/fs) (Note 35)

| GD | 67 (55FSI+12FSO) | Ts |

3-3 Echo Canceller Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>通過域</td>
<td>-0.01dB</td>
<td>0.167 FSO/FSI ≤ 6.000 PB</td>
<td>0.4583 FSI</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>阻止域</td>
<td>0.167 FSO/FSI ≤ 6.000 SB</td>
<td>0.5417 FSI</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>通過域リップル</td>
<td>0.167 FSO/FSI ≤ 6.000 PR</td>
<td>±0.01 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td>0.167 FSO/FSI ≤ 6.000 SA</td>
<td>95.2 dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>群遅延 (Ts=1/fs) (Note 35)</td>
<td>GD</td>
<td>67 (55FSI+12FSO)</td>
<td>Ts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. FSCONV
(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>通過域</td>
<td>-0.01dB</td>
<td>0.167</td>
<td>≦ FSO/FSI ≦ 0.363</td>
<td>PB 0</td>
<td>0.1814 FSI</td>
</tr>
<tr>
<td>阻止域</td>
<td>0.167</td>
<td>≦ FSO/FSI ≦ 0.363</td>
<td>SB 0.8185 FSI</td>
<td>0.8185 FSI</td>
<td>kHz</td>
</tr>
<tr>
<td>通過域リップル</td>
<td>0.167</td>
<td>≦ FSO/FSI ≦ 0.363</td>
<td>PR ±0.005</td>
<td>±0.005</td>
<td>dB</td>
</tr>
<tr>
<td>阻止域減衰量</td>
<td>0.167</td>
<td>≦ FSO/FSI ≦ 0.363</td>
<td>SA 94.0</td>
<td>94.0</td>
<td>dB</td>
</tr>
<tr>
<td>群遅延 (Ts=1/FSI) (Note 36)</td>
<td>GD</td>
<td>9</td>
<td></td>
<td></td>
<td>Ts</td>
</tr>
</tbody>
</table>

Note 36. 入力と出力の位相ずれがない時の、FSCONVへデータが入力された後の入力側LRCKの立ち上がりから、データを出力する前の出力側LRCK立ち上がりまでの時間です。
10. DC特性

(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD3=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハイレベル入力電圧1</td>
<td>VIH1</td>
<td>80%TVDD1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ローレベル入力電圧1</td>
<td>VIL1</td>
<td>20%TVDD1</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ハイレベル入力電圧2</td>
<td>VIH2</td>
<td>80%TVDD2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ローレル入力電圧2</td>
<td>VIL2</td>
<td>20%TVDD2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ハイレベル入力電圧3</td>
<td>VIH3</td>
<td>80%VDD33</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ローレベル入力電圧3</td>
<td>VIL3</td>
<td>20%VDD33</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SCL, SDA ハイレベル入力電圧</td>
<td>VIH4</td>
<td>70%TVDD2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SCL, SDA ローレベル入力電圧</td>
<td>VIL4</td>
<td>30%TVDD2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ハイレベル出力電圧</td>
<td>VOH1</td>
<td>TVDD1-0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ローレル出力電圧</td>
<td>VOL1</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ハイレベル出力電圧</td>
<td>VOH2</td>
<td>TVDD2-0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ローレル出力電圧</td>
<td>VOL2</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ハイレベル出力電圧</td>
<td>VOH3</td>
<td>VDD33-0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ローレル出力電圧</td>
<td>VOL3</td>
<td>0.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SCL, SDA ローレル出力電圧 Fast Mode</td>
<td>VOL4</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Fast Mode Plus</td>
<td>VOL4</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>入力リーク電流 (Note 40)</td>
<td>Iin</td>
<td>±10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>入力リーク電流 プルダウン抵抗付きピン パワーダウン時 (Note 41)</td>
<td>lid</td>
<td>66</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>入力リーク電流 プルダウン抵抗付きピン パワーダウン解除時 (Note 42)</td>
<td>lid</td>
<td>72</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>入力リーク電流 TESTI pin</td>
<td>lid</td>
<td>132</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>入力リーク電流 XTI pin</td>
<td>lid</td>
<td>17</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Note 37. SDIN1, SDIN2/JX0, SDOUT1, SDOUT2/GPO0, LRCK1, BICK1, LRCK2, BICK2 pinに対応します。

Note 38. SDIN3/JX1, SDIN4, SDOUT3/GPO1, STO/RDY/SDOUT4, LRCK3/JX2, BICK3/JX3, LRCK4, BICK4, PDN, SCLK/SCL, SO/SDA, CSN, SI/I2CFL pinに対応します。SCL, SDA pinは除きます。

Note 39. SDIN5/JX0, SDIN6, SDOUT5/GPO2, SDOUT6/DIT/GPO3, LRCK5, BICK5, CLKO, XTO, XT1, TESTI pinに対応します。

Note 40. プルダウン抵抗付ピン、XTI pinを除きます。

Note 41. パワーダウン(PDN pin = “L”)時、プルダウン抵抗付ピン(typ.50kΩ@3.3V)はLRCK5, BICK5, LRCK2, BICK2, LRCK1, BICK1, LRCK3/JX2, BICK3/JX3, LRCK4, BICK4 pinです。TESTI pinを除きます。

Note 42. パワーダウン解除(PDN pin = “H”)時、プルダウン抵抗付ピン(typ.46kΩ@3.3V)はLRCK5, BICK5, LRCK2, BICK2, LRCK1, BICK1, LRCK3/JX2, BICK3/JX3, LRCK4, BICK4 pinです。TESTI pinを除きます。
11. スイッチング特性

1. システムクロック
(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTI Input Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) X’tal Oscillator</td>
<td>fXTI</td>
<td>11.2896</td>
<td></td>
<td>18.432</td>
<td>MHz</td>
</tr>
<tr>
<td>b) XTI Clock Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle</td>
<td></td>
<td></td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>fXTI</td>
<td>0.256</td>
<td></td>
<td>24.576</td>
<td>MHz</td>
</tr>
<tr>
<td>CLKO Output Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Frequency</td>
<td>fCLKO</td>
<td>2.048</td>
<td></td>
<td>24.576</td>
<td>MHz</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>LRCK/BICK Input Timing (Slave Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRCK Input Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>fs</td>
<td>8</td>
<td></td>
<td>192</td>
<td>kHz</td>
</tr>
<tr>
<td>BICK Input Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>(Note 43)</td>
<td>fBCLK</td>
<td>0.256</td>
<td>24.576</td>
<td>MHz</td>
</tr>
<tr>
<td>Pulse Width Low</td>
<td>tBCLKL</td>
<td>0.4 / fBCLK</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Pulse Width High</td>
<td>tBCLKH</td>
<td>0.4 / fBCLK</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>LRCK/BICK Output Timing (PLL Master Mode)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRCK Output Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>fs</td>
<td>8</td>
<td></td>
<td>192</td>
<td>kHz</td>
</tr>
<tr>
<td>Pulse Width High</td>
<td>(Note 43)</td>
<td>tLRCKH</td>
<td></td>
<td>1/fBCLK</td>
<td>ns</td>
</tr>
<tr>
<td>Except PCM Mode</td>
<td>tLRCKH</td>
<td>50</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>BICK Output Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>(Note 43)</td>
<td>fBCLK</td>
<td>0.256</td>
<td>24.576</td>
<td>MHz</td>
</tr>
<tr>
<td>Duty</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>%</td>
</tr>
</tbody>
</table>

Note 43. fBCLK ≥ 2 x fs x (入出力データのデータ長)の周波数を満たす必要があります。
2. パワーダウン

(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD3=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDNパルス幅</td>
<td>(Note 44)</td>
<td>tRST</td>
<td>600</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 44. 電源投入時はPDN pin = “L”にしてください。

Figure 5. システムクロックタイミング波形

Figure 6. リセットタイミング波形
3. シリアルデータインタフェース(SDIN1 ~ SDIN6, SDOUT1 ~ SDOUT6)
(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V;
AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>スレーブモード</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BICK“↑”からLRCKへの遅延時間</td>
<td>(Note 45)</td>
<td>tBLRD</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>LRCKからBICK“↑”への遅延時間</td>
<td>(Note 45)</td>
<td>tLRBD</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>シリアルデータ入力 ラッチセットアップ時間</td>
<td></td>
<td>tBSIDS</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>シリアルデータ入力 ラッチホールド時間</td>
<td></td>
<td>tBSIDH</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>BICK“↓”からシリアルデータ出力遅延時間</td>
<td>(Note 46)</td>
<td>tBSOD1</td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>BICK“↑”からシリアルデータ出力遅延時間</td>
<td>(Note 45, Note 47)</td>
<td>tBSOD2</td>
<td>5</td>
<td>30</td>
<td>ns</td>
</tr>
</tbody>
</table>

マスタモード					
BICK周波数		fBCLK	32, 48, 64, 128, 256		fs
BICKデューティ比			50		%
BICK“↓”からLRCKへの遅延時間	(Note 46)	tMBL	-10	10	ns
シリアルデータ入力 ラッチセットアップ時間		tBSIDS	20		ns
シリアルデータ入力 ラッチホールド時間		tBSIDH	10		ns
BICK“↓”からシリアルデータ出力遅延時間	(Note 46, Note 47)	tBSOD	10		ns

Note 45. レジスタBCKPx bit = “1”でBICKの極性を反転させた場合は、BICKの“↓”からになります。
Note 46. レジスタBCKPx bit = “1”でBICKの極性を反転させた場合は、BICKの“↑”からになります。
Note 47. スレーブモード動作時、サンプリング周波数96kHz且つTDM256モードで出力する場合、
SDOPHx bit = “1”に設定して、BICK“↑”基準でデーテを出力してください。マスタモード動作
時は、SDOPHx bit = “0”で使用して下さい。
3-1. レイプモード

Figure 7. レイプモード時 シリアルインタフェース入力タイミング波形

Figure 8. レイプモード時 シリアルインタフェース出力タイミング波形 (SDOPHx bit = “0”)

Figure 9. レイプモード時 シリアルインタフェース出力タイミング波形 (SDOPHx bit = “1”)

[AK7738A]
3-2. マスタモード

Figure 10. マスタモード時 シリアルインタフェース入力タイミング波形

Figure 11. マスタモード時 シリアルインタフェース出力タイミング波形 (SDOPHx bit = “0”)
4. SPIインタフェース

4-1 クロックリセット時(CKRESETN bit = “0”)

(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>マイコンインタフェース用信号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK 周波数</td>
<td>(Note 50) fSCLK</td>
<td>3</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK ローレベル幅</td>
<td>tSCLKL</td>
<td>160</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK ハイレベル幅</td>
<td>tSCLKH</td>
<td>160</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-2 PLLロック時(CKRESETN bit = “1”かつPLLがロック)

(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V; CL=20pF)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>マイコンインタフェース用信号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK 周波数</td>
<td>(Note 49) (Note 50) fSCLK</td>
<td>6</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK ローレベル幅</td>
<td>tSCLKL</td>
<td>72</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK ハイレベル幅</td>
<td>tSCLKH</td>
<td>72</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 48. コマンドコードの24bit (コマンド8bit + アドレス16bit)目入力時は除きます。書き込み準備データ読み出しコマンド24H、25Hの場合は8bit(コマンド8bit)目になります。

Note 49. CKRESETN bit = “0”→“1”設定後、PLLがロックするまでには最大10msかかります。

Note 50. コントロールレジスタへのアクセスは常にmax:6MHzで行えます。コントロールレジスタを除いたAK7738AとのインタフェースはPLLアンロック時max:3MHz、PLLロック時max:6MHzで行えます。また、PLLアンロック時、コントロールレジスタを除いたAK7738Aとのインタフェースを行う際、DLRDY bitを“1”に設定する必要があります。
Figure 12. SPIインタフェースタイミング波形1

Figure 13. SPIインタフェースタイミング波形2（マイコン→AK7738A）

Figure 14. SPIインタフェースタイミング波形3（AK7738A → マイコン）
5. I^2Cインタフェース

(Ta=25°C; AVDD=3.0~3.6V; LVDD=3.0~3.6V; TVDD1=1.7~3.6V; TVDD2=1.7~3.6V; VDD33=3.0~3.6V; AVSS=DVSS1=DVSS2=DVSS3=0V)

<I^2C: Fast Mode>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL clock frequency</td>
<td>f_{SCL}</td>
<td>400</td>
<td>kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Free Time Between Transmissions</td>
<td>t_{BUF}</td>
<td>1.3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Condition Hold Time (prior to first Clock pulse)</td>
<td>$t_{HD:STA}$</td>
<td>0.6</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock Low Time</td>
<td>t_{LOW}</td>
<td>1.3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock High Time</td>
<td>t_{HIGH}</td>
<td>0.6</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time for Repeated Start Condition</td>
<td>$t_{SU:STA}$</td>
<td>0.6</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA Hold Time from SCL Falling</td>
<td>$t_{HD:DAT}$</td>
<td>0</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA Setup Time from SCL Rising</td>
<td>$t_{SU:DAT}$</td>
<td>0.1</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time of Both SDA and SCL Lines</td>
<td>t_R</td>
<td>0.3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Time of Both SDA and SCL Lines</td>
<td>t_F</td>
<td>0.3</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time for Stop Condition</td>
<td>$t_{SU:STO}$</td>
<td>0.6</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width of Spike Noise Suppressed By Input Filter</td>
<td>t_{SP}</td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitive load on bus</td>
<td>C_b</td>
<td>400</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<I^2C: Fast Mode Plus>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL clock frequency</td>
<td>f_{SCL}</td>
<td>1</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Free Time Between Transmissions</td>
<td>t_{BUF}</td>
<td>0.5</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Condition Hold Time (prior to first Clock pulse)</td>
<td>$t_{HD:STA}$</td>
<td>0.26</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock Low Time</td>
<td>t_{LOW}</td>
<td>0.5</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock High Time</td>
<td>t_{HIGH}</td>
<td>0.26</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time for Repeated Start Condition</td>
<td>$t_{SU:STA}$</td>
<td>0.26</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA Hold Time from SCL Falling</td>
<td>$t_{HD:DAT}$</td>
<td>0</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDA Setup Time from SCL Rising</td>
<td>$t_{SU:DAT}$</td>
<td>0.05</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time of Both SDA and SCL Lines</td>
<td>t_R</td>
<td>0.12</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Time of Both SDA and SCL Lines</td>
<td>t_F</td>
<td>0.12</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup Time for Stop Condition</td>
<td>$t_{SU:STO}$</td>
<td>0.26</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width of Spike Noise Suppressed By Input Filter</td>
<td>t_{SP}</td>
<td>50</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitive load on bus</td>
<td>C_b</td>
<td>550</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 15. I^2C BUSインタフェースタイミング波形
12. 関連接続回路例

■ 接続図

1. I²Cインタフェース時の接続例

Figure 16. I²Cインタフェース時の接続例
2. SPIインタフェース時の接続例

Figure 17. SPIインタフェース時の接続例
■ 周辺回路
1. グランド
AVSS, DVSS1, DVSS2, DVSS3は、同電位になるように接続してください。デカップリングコンデンサ、特に小容量のセラミックコンデンサはAK7738Aの近くで接続して下さい。

2. 基準電圧
VCOM pinはAVDD/2電圧を出力しており、アナログ信号のコモン電圧として使われます。高周波ノイズを除去するために、2.2μF程度のセラミックコンデンサをAVSSとの間に接続して下さい。
VCOM pinは外部回路には使用しないでください。また、ディジタル信号、特にクロック信号は変調器へのカップリングを避けるため、VCOM pinからできるだけ離して下さい。

3. アナログ入力
アナログ入力信号はアナログ変調器に入力されます。差動入力ピンにおける最大入力電圧は、FS=±(AVDD-AVSS)×2.3/3.3となります。シングルエンド入力ピンにおける最大入力電圧は、FS=(AVDD-AVSS)×2.3/3.3となります。従ってAVDD=3.3V, AVSS=0.0Vのとき、差動入力ピンにおける入力レンジは±2.30Vpp（typ）、シングルエンド入力ピンにおける入力レンジは2.30Vpp（typ）です。尚、ディジタル出力コードのフォーマットは2's complement（2の補数）です。DCオフセットは内蔵のHPFでキャンセルされます。

AK7738Aのアナログ入力ピンには、パワーダウン解除後にAVDD/2の内部動作点が生成されます。内部動作点生成回路は、各入力ピンに対して20kohm（typ@fs=48kHz）の内部インピーダンスを持ちます。各入力ピンにDC成分除去用コンデンサを接続する場合には内部インピーダンスとの時定数により内部動作点が立ち上がります。

AK7738Aはfs=48kHz, 96kHz, 192kHzのとき、6.144MHzでアナログ入力をサンプリングします。AK7738A内部には、AAF（アンチ・エリアシング・フィルタ）が内蔵されており、ADC前方に外部でローパスフィルタを通じさせる必要はありません。しかしD/Aコンバータ変換後のオーディオ信号など、帯域外ノイズの大きな信号を入力する場合には、ADC前方に外部でローパスフィルタを通じせることを推奨します。

AK7738Aのアナログ電源電圧は+3.3V（typ）であり、アナログ入力ピンには、AVDD+0.3V以上、AVSS-0.3V以下の電圧と、10mA以上の電流を入力してはいけません。過大電流の流入は、内部の保護回路の破壊、さらにはラッチアップを引き起こし、ICの破壊に至ります。従って、周辺のアナログ回路の電圧が±15V等の場合はアナログ入力ピンを絶対最大定格以上の信号から保護する必要があります。

Figure 18. fs=48kHz時の入力バッファ回路例（差動入力）
4. アナログ出力
ラインアウト出力はシングルエンド出力です。出力レンジはVCOM電圧を中心に0.857xAVDD Vpp (typ)で、入力コードのフォーマットは、2's compliment (2の補数)で、7FFFFFFFH (@32bit)に対しては正のフルスケール、00000000H (@32bit)に対しては負のフルスケール、VCOM電圧が出力されます。VCOM電圧はAVDD/2 (typ)です。ΔΣ変調器が発生する帯域外ノイズ (シェーピングノイズ)は、内蔵のスイッチキャパシタフィルタ (SCF)と、連続フィルタ (CTF)で除去されます。

5. デジタル回路との接続
ディジタル回路によるノイズを最小限に抑えるために、ディジタル出力にはCMOSロジック、または低電圧ロジックを接続してください。適合するロジックファミリーは、CMOSならば74HC、74ACシリーズ、低電圧ロジックならば、74LV、74LV-A、74ALVC、74AVCシリーズ等です。

6. 水晶振動子
AK7738AのXTI pin及びXTO pinに接続する水晶振動子は、発振余裕度の観点から、以下の等価回路パラメータを満たすもの、XTI、XTO各pinに接続する容量は以下の値で使用することを推奨します。

<table>
<thead>
<tr>
<th>XTAL発振周波数</th>
<th>R1 (max)</th>
<th>C0 (max)</th>
<th>XTI, XTO pin接続容量</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.288MHz</td>
<td>120Ω</td>
<td>2.5pF</td>
<td>22pF</td>
</tr>
<tr>
<td>18.432MHz</td>
<td>80Ω</td>
<td>2.5pF</td>
<td>15pF</td>
</tr>
</tbody>
</table>

Table 5. 水晶振動子接続時の推奨抵抗と容量

Figure 19. 水晶振動子の電気的等価回路
13. パッケージ

■ 外形寸法図

64pin LQFP (Unit: mm)

■ 材質・メッキ仕様

パッケージ材質：エポキシ系樹脂
リードフレーム材質：銅
端子処理：半田(無鉛)メッキ
1) Pin #1 indication
2) Date Code: XXXXXXXX(7 digits)
3) Marking Code: AK7738AVQ
4) Asahi Kasei Logo

14. 改訂履歴

<table>
<thead>
<tr>
<th>Date (Y/M/D)</th>
<th>Revision</th>
<th>Reason</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/6/26</td>
<td>0</td>
<td>初版</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
重要な注意事項

0. 本書に記載された弊社製品（以下、「本製品」といいます。）、および、本製品の仕様につきましては、本製品改善のために予告なく変更することがあります。従いまして、ご使用を検討の際には、本書に掲載した情報が最新のものであることを弊社営業担当、あるいは弊社特約店営業担当にご確認ください。

1. 本書に記載された情報は、本製品の動作例、応用例を説明するものであり、その使用に際して弊社および第三者の知的財産権その他の権利に対する保証または実施権の許諾をうるものではありません。お客様の機器設計において当該情報を使用される場合は、お客様の責任において行って頂くとともに、当該情報の使用に起因してお客様または第三者に生じた損害に対し、弊社はその責任を負うものではありません。

2. 本製品は、医療機器、航空宇宙用機器、輸送機器、交通信号機器、燃焼機器、原子力制御用機器、各種安全装置など、その装置・機器の故障や動作不良が、直接または間接を問わず、生命、身体、財産等へ重大な損害を及ぼすことが通常予想されるような極めて高い信頼性を要求される用途に使用されることを意図しておらず、保証もされていません。そのため、別途弊社より書面で許諾された場合を除き、これらの用途に本製品を使用しないでください。万が一、これらの用途に本製品を使用された場合、弊社は、当該使用から生ずる損害等の責任を一切負うものではありません。

3. 弊社は品質、信頼性の向上に努めておりますが、電子製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により、生命、身体、財産等が侵害されることのないよう、お客様の責任において、本製品を搭載されるお客様の製品に必要な安全設計を行うことをお願いします。

4. 本製品および本書記載の技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。本製品および本書記載の技術情報を輸出または非居住者に提供する場合は、「外国為替及び外国貿易法」その他の適用ある輸出国連法令を遵守し、必要な手続きを行ってください。本製品および本書記載の技術情報を国内外の法令および規則により製造、使用、販売を禁止されている機器・システムに使用しないでください。

5. 本製品の環境適合性等の詳細につきましては、製品個別に必ず弊社営業担当までお問合せください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようにご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、弊社は一切の責任を負いかねます。

6. お客様の転売等によりこの注意事項に反して本製品が使用され、その使用から損害等が生じた場合はお客様にて当該損害をご負担または補償して頂きますのでご了承ください。

7. 本書の全部または一部を、弊社の事前の書面による承諾なしに、転載または複製することを禁じます。