AKD4118A-A is the evaluation board for AK4118A, 192 kHz digital audio transceiver. This board has BNC connector to interface with other digital audio equipment.

Ordering guide

AKD4118A-A --- Evaluation board for AK4118A
(Control software is included in this package.)

FUNCTION

- Digital interface
 - S/PDIF:
 - 8 channel input (BNC)
 - 2 channel output (BNC)
 - Serial audio data I/F:
 - 1 input/output (for DIR data output/DIT data input. 10-pin port)

- Serial control data I/F
 - 1 input/output port (10-pin port)

![AK4118A-A Block Diagram](image)

Figure 1. AKD4118A-A Block Diagram

Note 1. Circuit diagram and PCB layout are attached at the end of this manual.
Operating sequence

1. **Set up the power supply lines.**

<table>
<thead>
<tr>
<th>Name</th>
<th>Color</th>
<th>Voltage</th>
<th>Breakdown</th>
<th>Details</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>Red</td>
<td>+5V</td>
<td>VDD of AK4118A</td>
<td>Must be connected</td>
<td>+5V</td>
</tr>
<tr>
<td>GND</td>
<td>Black</td>
<td>GND</td>
<td>GND</td>
<td>Must be connected</td>
<td>GND</td>
</tr>
</tbody>
</table>

Note 2. Each supply line should be distributed from the power supply unit.

2. **Set up the evaluation mode and jumper pins.** (Refer to the following item.)

3. **Connect cables.** (Refer to the following item.)

4. **Power on.**

The AK4118A should be reset once bringing PDN (SW2) “L” upon power-up.

Evaluation modes

1. **Evaluation for DIR (Default)**

 S/PDIF in (BNC) – AK4118A – PORT2 (Serial Data I/O)

 The DIR generates MCLK, BICK, LRCK and SDATA from the received data through BNC connector. The AKD4118A-A can be connected with the AKM’s DAC evaluation board via 10 pin flat cable.
a. Set-up of Bi-phase Input

Bi-phase signal input is used from BNC (J2) connector.

a-1. Setting for the RX0-7.

Only RX0-3 can be used in parallel mode. The jumper which selects the Rx channel should be short. RX0 and RX0-7 should not select BNC at the same time.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RX0</td>
<td>BNC</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX1</td>
<td>Open</td>
<td>Short</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX2</td>
<td>Open</td>
<td>Open</td>
<td>Short</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX3</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Short</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX4</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX4</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX5</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX5</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX6</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX6</td>
<td>Open</td>
</tr>
<tr>
<td>RX7</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX7</td>
</tr>
</tbody>
</table>

Table 1. Set-up of RX0-7

a-2. Set-up of AK4118A input path

It sets up by SW 1_1 and SW 1_5 in parallel mode. Please set up IPS2-0 bits in serial mode.

<table>
<thead>
<tr>
<th>-</th>
<th>IPS1 pin (SW1_5)</th>
<th>IPS0 pin (SW1_1)</th>
<th>INPUT Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS2 bit</td>
<td>IPS1 bit</td>
<td>IPS0 bit</td>
<td>RX0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RX0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RX1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>RX2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>RX3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>RX4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>RX5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>RX6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>RX7</td>
</tr>
</tbody>
</table>

(In parallel mode, IPS2 is fixed to “0”)

Table 2. Recovery Data Select
b. Set-up of clock input and output

The signal level outputted/inputted from PORT2 is 3.3V.

![PORT2 pin layout](image)

Figure 2. PORT2 pin layout

b-1. MCKO1/MCKO2

The output of MCKO1 pin or MCKO2 pin can be selected by JP12. The output frequency of MCKO1/MCKO2 is selected by OCKS 1-0.

<table>
<thead>
<tr>
<th>Output signal</th>
<th>JP12</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCKO1</td>
<td>MCKO1</td>
</tr>
</tbody>
</table>
| MCKO2 | MCKO2 |< Default >

Table 3. Set-up of MCKO1/MCKO2

<table>
<thead>
<tr>
<th>OCKS1 pin (SW3_2)</th>
<th>OCKS0 pin (SW3_3)</th>
<th>(X’tal)</th>
<th>MCKO1</th>
<th>MCKO2</th>
<th>fs (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL</td>
<td>X’tal</td>
<td>< Default ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>256fs</td>
<td>256fs</td>
<td>”L”</td>
<td>256fs</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>256fs</td>
<td>256fs</td>
<td>”L”</td>
<td>128fs</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>512fs</td>
<td>512fs</td>
<td>”L”</td>
<td>256fs</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>128fs</td>
<td>128fs</td>
<td>”L”</td>
<td>64fs</td>
</tr>
</tbody>
</table>

Table 4. Master Clock Frequency Select

b-2. Set-up of input/output of BICK and LRCK

Please select SW 3_7 (DIR_I/O) according to the setup of audio format of AK4118A.

<table>
<thead>
<tr>
<th>Audio format</th>
<th>SW3_7 (DIR_I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave mode</td>
<td>0</td>
</tr>
<tr>
<td>Master mode</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5. Set-up of DIR_I/O
c. Set-up of Audio format

It sets up by SW 1_2, SW 1_3 and SW1_4 in parallel mode. Please set up DIF2-0 bit in serial mode.

<table>
<thead>
<tr>
<th>Mode</th>
<th>DIF2 pin (SW1_4)</th>
<th>DIF1 pin (SW1_3)</th>
<th>DIF0 pin (SW1_2)</th>
<th>DAUX</th>
<th>SDTO</th>
<th>LRCK</th>
<th>BICK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIF2 bit</td>
<td>DIF1 bit</td>
<td>DIF0 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>16bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64fs</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>24bit, Left justified</td>
<td>18bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64fs</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>20bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64fs</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24bit, Left justified</td>
<td>24bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64fs</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>24bit, Left justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64fs</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>24bit, FS</td>
<td>24bit, FS</td>
<td>L/H</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64-128fs</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>24bit, Left justified</td>
<td>H/L</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64-128fs</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>24bit, FS</td>
<td>24bit, FS</td>
<td>L/H</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 6. Audio format

Table 7. Clock Operation Mode Select

<table>
<thead>
<tr>
<th>CM1 pin (SW3_1)</th>
<th>CM0 pin (JP18)</th>
<th>(UNLOCK)</th>
<th>PLL</th>
<th>X'tal</th>
<th>Clock source</th>
<th>SDTO source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM1 bit</td>
<td>CM0 bit</td>
<td></td>
<td></td>
<td></td>
<td>PLL (RX)</td>
<td>RX</td>
</tr>
<tr>
<td>0</td>
<td>0 (CM0=L)</td>
<td>OFF</td>
<td>ON</td>
<td>ON (Note 3)</td>
<td>PLL (RX)</td>
<td>RX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X'tal DAUX</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1 (CDTO/CM0=H)</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>X'tal DAUX</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 (CM0=L)</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>PLL (RX)</td>
<td>RX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X'tal DAUX</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 (CDTO/CM0=H)</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>X'tal DAUX</td>
<td></td>
</tr>
</tbody>
</table>

ON: Oscillation (Power-up), OFF: STOP (Power-Down)

Note 3. When the X’tal is not used as clock comparison for fs detection (XTL0, 1= “1,1”), the X’tal is OFF.

Table 7. Clock Operation Mode Select
(2) Evaluation for DIT PORT2 (Serial Data I/O) – AK4118A – S/PDIF out (BNC)

MCLK, BICK, LRCK and DAUX are input the via 10pin header (PORT2: DIR).

a. Set-up of a Bi-phase output signal

Bi-phase signal output is used from BNC (J4) connector. TX0 and TX1 should not select a BNC connector at the same time. The data outputted from TX1 can be selected by OPS12-10 bit. As for TX0, only the loop back mode of RX corresponds. This mode is fixed to RX0 in parallel mode. In serial mode, it can be selected by OPS02-00 bits.

<table>
<thead>
<tr>
<th>Output Data</th>
<th>JP13 (TX0)</th>
<th>JP19 (TXP1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX0</td>
<td>BNC</td>
<td>Open</td>
</tr>
<tr>
<td>TX1</td>
<td>Open</td>
<td>BNC</td>
</tr>
</tbody>
</table>

< Default >

Table 8. Set-up of Bi-phase signal
b. Set-up of clock input and output

The used signals are MCLK, LRCK, BICK, and DAUX. The signal level outputted and inputted from PORT2 is 3.3V.

![PORT2 pin layout](image)

Figure 3. PORT2 pin layout

<table>
<thead>
<tr>
<th>Clock</th>
<th>PORT</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCLK</td>
<td>PORT2</td>
<td>OUT</td>
</tr>
<tr>
<td>BICK</td>
<td>PORT2</td>
<td>IN / OUT</td>
</tr>
<tr>
<td>LRCK</td>
<td>PORT2</td>
<td>IN / OUT</td>
</tr>
<tr>
<td>DAUX</td>
<td>PORT2</td>
<td>IN</td>
</tr>
</tbody>
</table>

Table 9. Clock input/output

b-1. MCKO1/MCKO2

Please refer to Table 3 and Table 4.

b-2. Set-up of input/output of BICK and LRCK

Please refer to Table 5.

c. Set-up of audio data format

Please refer to Table 6.

d. Set-up of CM1 and CM0

Please refer to Table 7.
Serial control

The AK4118A can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT6 (uP-I/F) with PC by 10-line flat cable packed with the AKD4118A-A. Take care of the direction of connector. There is a mark at pin#1. The pin layout of PORT6 is as Figure 4.

<table>
<thead>
<tr>
<th>Mode</th>
<th>SW1_5</th>
<th>JP18</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 wire Serial</td>
<td>L</td>
<td>[CDTO/CM0=H] is Short.</td>
</tr>
<tr>
<td>IIC</td>
<td>H</td>
<td>[SDA] and [CM0=L] are Short. (Note 4)</td>
</tr>
</tbody>
</table>

Table 10. Set-up of Parallel mode and Serial mode

Note 4. In IIC mode, the chip address is fixed to “01”.

This evaluation board encloses control software. A software operation procedure is included in an evaluation board manual.
Toggle switch set-up

<table>
<thead>
<tr>
<th>SW2</th>
<th>PDN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reset switch for AK4118A. Set to “H” during normal operation. Bring to “L” once after the power is supplied.

LED indication

<table>
<thead>
<tr>
<th>LE1</th>
<th>INT0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bright when INT0 pin goes to “H”.

<table>
<thead>
<tr>
<th>LE2</th>
<th>INT1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bright when INT1 pin goes to “H”.

DIP switch (SW1) set-up: -off- means “L”

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Name</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPS0</td>
<td>Set-up of IPS0 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>DIF0</td>
<td>Set-up of DIF0 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>DIF1</td>
<td>Set-up of DIF1 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>DIF2</td>
<td>Set-up of DIF2 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>IPS1/IIC</td>
<td>Set-up of IPS1 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set-up of IIC pin. (in serial mode)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P/SN</td>
<td>Set-up of P/SN pin. “L”: Serial mode, “H”: Parallel mode</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>TEST</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
<tr>
<td>8</td>
<td>ACKS</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
</tbody>
</table>

DIP switch (SW3) set-up: -off- means “L”

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Name</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CM1</td>
<td>Set-up of CM1 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>OCKS1</td>
<td>Set-up of OCKS1 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>OCKS0</td>
<td>Set-up of OCKS0 pin. (in parallel mode)</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>PSEL</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>XTL0</td>
<td>See Table 11.</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>XTL1</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>DIR_I/O</td>
<td>Setting the transmission direction of BICK and LRCK of the PORT2. “L”: When inputting from PORT2, “H”: When outputting from PORT2</td>
<td>ON</td>
</tr>
<tr>
<td>8</td>
<td>DIT_I/O</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Set-up of XTL1 and XTL0

<table>
<thead>
<tr>
<th>SW3_6</th>
<th>SW3_5</th>
<th>X’tal Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XTL1</th>
<th>XTL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 11. Set-up of XTL1 and XTL0
Jumper set up.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jumper Name</th>
<th>Function</th>
</tr>
</thead>
</table>
| 1 | D3V/VD | Selection the power supply of digital logic circuit.
 | | D3V: +3.3V input. < Default >
 | | VD: +5.0V input. |
| 2 | RXP0 | Set-up of RX0 input circuit.
 | | OPT: Not to use.
 | | XLR: Not to use.
 | | BNC: BNC connector (J2) is used. < Default > |
| 4,5,6 | RX1-3 | Set-up of RX1-3 input circuit.
 | | Only for the Rx input you want to use, set the jumper pin to "short". |
| 7,8,9,10 | RX4-7 | RX4-7 set-up depending serial/parallel mode
 | | RX4-7: Serial mode < Default >
 | | Only for the Rx input you want to use, set the jumper pin to "short".
 | | DIF2-0,IPS0: Parallel mode |
| 12 | DIR MCLK | MCKO set-up for PORT2 (DIR).
 | | MCKO1: MCKO1 of AK4118A < Default >
 | | MCKO2: MCKO2 of AK4118A |
| 13 | TX0 | Set-up of TX0 output circuit.
 | | OPT: Not to use.
 | | BNC: BNC connector (J4) is used.
 | | Open: When using TX1 output, JP13 is set to “Open”. < Default > |
| 18 | SDA/CDTO | Set-up of SDA/CDTO pin.
 | | 4 wire serial < Default >
 | | IIC |
| 19 | TXP1 | Set-up of TXP1 input circuit.
 | | OPT: Not to use.
 | | XLR: Not to use.
 | | BNC: BNC connector (J4) is used. < Default >
 | | Open: When using TX0 output, JP19 is set to “Open”. |
Control Software Manual

Set-up of evaluation board and control software

1. Set up the AKD4118A-A according to previous term.

2. Connect IBM-AT compatible PC with AKD4118A-A by 10-line type flat cable (packed with AKD4118A-A). Take care of the direction of 10pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer “Installation Manual of Control Software Driver by AKM device control software”. In case of Windows95/98/ME, this installation is not needed. This control software does not operate on Windows NT.)

4. Access the CD-ROM drive and double-click the icon of “akd4118a-a.exe” to set up the control program.

5. Then please evaluate according to the follows.

Operation flow

Keep the following flow.

1. Set up the control program according to explanation above.
2. Click “Write default” button.
3. Then set up the dialog and input data.

Explanation of each buttons

1. [Port Setup] : Set up the printer port.
2. [Write default] : Initialize the register of AK4118A.
3. [All Write] : Write all registers that is currently displayed.
4. [Read All] : All the registers of AK4118A are read.
5. [Function1] : Dialog to write data by keyboard operation.
7. [SAVE] : Save the current register setting.
8. [OPEN] : Write the saved values to all register.
10. [Read] : The data corresponding to each register is read.
Explanation of each dialog

1. [Function1 Dialog] : Dialog to write data by keyboard operation
 - Address Box: Input register address in 2 figures of hexadecimal.
 - Data Box: Input register data in 2 figures of hexadecimal.

 If you want to write the input data to AK4118A, click “OK” button. If not, click “Cancel” button.

2. [Write Dialog] : Dialog to write data by mouse operation

 There are dialogs corresponding to each register.

 Click the “Write” button corresponding to each register to set up the dialog. If you check the check box, data becomes “H” or “1”. If not, “L” or “0”.

 If you want to write the input data to AK4118A, click “OK” button. If not, click “Cancel” button.

Indication of data

Input data is indicated on the register map. Red letter indicates “H” or “1” and blue one indicates “L” or “0”. Blank is the part that is not defined in the datasheet.

Attention on the operation

If you set up Function1 dialog, input data to all boxes. Attention dialog is indicated if you input data or address that is not specified in the datasheet or you click “OK” button before you input data. In that case set up the dialog and input data once more again. These operations does not need if you click “Cancel” button or check the check box.
<table>
<thead>
<tr>
<th>Date (yy/mm/dd)</th>
<th>Manual Revision</th>
<th>Board Revision</th>
<th>Reason</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/08/05 KM100300 0</td>
<td>First edition</td>
<td>-</td>
<td>-</td>
<td>Circuit diagram was changed. PORT1, PORT4: “Mount” -> “Unmounts” Block diagram was changed. Jumper setup was changed.</td>
<td></td>
</tr>
<tr>
<td>17/05/18 KM100301 1</td>
<td>Change</td>
<td>1, 10, 14</td>
<td>-</td>
<td>Board revision update(Rev.1—2). Change of U7.</td>
<td></td>
</tr>
<tr>
<td>22/06/07 KM100302 2</td>
<td>Modification</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.

2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.

3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.

4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.

7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

Rev.1