概要

AKD4118A-Aは192kHzディジタルオーディオトランシーバ、AK4118Aの評価用ボードです。BNCコネクタを介してディジタルオーディオ機器とインタフェース可能です。

■オーダリングガイド

AKD4118A-A --- AK4118A評価用ボード
（コントロールソフトを同梱。）

機能

□ デジタルインタフェース

- S/PDIF:
 入力8系統（BNC）
 出力2系統（BNC）
- シリアルデータI/F:
 入出力1系統（DIR/DITデータ入出力用10ピンポート）

□ シリアルコントロール用10ピンポート

Note 1. 回路図、パターン図は文末に添付。
■ 操作手順

1) 電源の配線

<table>
<thead>
<tr>
<th>名称</th>
<th>色</th>
<th>電圧</th>
<th>内訳</th>
<th>備考</th>
<th>Default の設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>赤</td>
<td>+5V</td>
<td>AK4118Aの電源</td>
<td>必ず接続します。</td>
<td>+5V</td>
</tr>
<tr>
<td>GND</td>
<td>黒</td>
<td>GND</td>
<td>GND</td>
<td>必ず接続します。</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table 1. 電源の配線

Note 2. 配線は電源の根本から分けて下さい。

2) 評価モード、ジャンパピン、DIPスイッチの設定(以下参照)
3) コネクタの接続(以下参照)
4) 電源投入
電源投入後、必ず一度リセットを行って下さい。
AK4118Aは電源投入後、必ず一度SW2を“L”にしてパワーダウンを行って下さい。

■ 可能な評価モード

(1) DIRの評価 < Default >

S/PDIF in (BNC) – AK4118A – PORT2 (Serial Data I/O)

BNCで受信したBi-phase信号からMCLK,BICK,LRCK,SDATAを生成しPORT2を通じて入出力するこ
とが出来ます。AKD4118A-Aと弊社D/A評価用ボードを10線フラットケーブルで接続することが出
来ます。
a. Bi-phase入力信号の設定

BNC(J2)コネクタから入力可能です。

a-1. RX0-7への入力

Parallel mode時はRX0-3のみ使用可能です。使用する入力のみShortにして下さい。
RX0-7は同時に選択しないで下さい。

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RX0</td>
<td>BNC</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX1</td>
<td>Open</td>
<td>Short</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX2</td>
<td>Open</td>
<td>Open</td>
<td>Short</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX3</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Short</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX4</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX4</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX5</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX5</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>RX6</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX6</td>
<td>Open</td>
</tr>
<tr>
<td>RX7</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>Open</td>
<td>RX7</td>
</tr>
</tbody>
</table>

Table 1. RX0-7の設定

a-2. AK4118A入力パスの設定

Parallel mode時はSW1_1, SW1_5で設定します。Serial mode時はIPS2-0 bitを設定して下さい。

<table>
<thead>
<tr>
<th>IPS2 bit</th>
<th>IPS1 bit</th>
<th>IPS0 bit</th>
<th>INPUT Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RX0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>RX1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>RX2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>RX3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>RX4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>RX5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>RX6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>RX7</td>
</tr>
</tbody>
</table>

<Default>

Table 2. Recovery Data Select

Parallel mode時は"0"固定です。)
b. クロック入出力の設定

PORT2から入出力される信号レベルは3.3Vです。

![PORT2ピン配置図](image)

Figure 2. PORT2のピン配置

b-1. MCKO1/MCKO2

JP12でMCKO1 pin or MCKO2 pinの出力を選択することが出来ます。MCKO1/MCKO2の出力周波数はOCKS1-0にて設定を行います。

<table>
<thead>
<tr>
<th>出力信号</th>
<th>JP12</th>
<th>MCKO1</th>
<th>MCKO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< Default ></td>
<td>MCKO1</td>
<td>MCKO2</td>
</tr>
</tbody>
</table>

Table 3. MCKO1/MCKO2の選択

<table>
<thead>
<tr>
<th>OCKS1 pin (SW3_2)</th>
<th>OCKS0 pin (SW3_3)</th>
<th>(X’tal)</th>
<th>MCKO1</th>
<th>MCKO2</th>
<th>fs (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCKS1 bit</td>
<td>OCKS0 bit</td>
<td>PLL</td>
<td>X’tal</td>
<td>PLL</td>
<td>X’tal</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>256fs</td>
<td>256fs</td>
<td>“L”</td>
<td>96 kHz</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>256fs</td>
<td>256fs</td>
<td>“L”</td>
<td>96 kHz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>512fs</td>
<td>512fs</td>
<td>“L”</td>
<td>48 kHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>128fs</td>
<td>128fs</td>
<td>“L”</td>
<td>192 kHz</td>
</tr>
</tbody>
</table>

Table 4. Master Clock Frequency Select

b-2. BICK, LRCKの入出力の設定

AK4118Aのオーディオフォーマットの設定に従ってSW3_7(DIR_I/O)の設定を行って下さい。

<table>
<thead>
<tr>
<th>オーディオフォーマット</th>
<th>SW3_7 (DIR_I/O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>スレーブモード時</td>
<td>0</td>
</tr>
<tr>
<td>マスターモード時</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5. DIR_I/Oの設定

<KM100301>
c. オーディオフォーマット

Parallel mode時はSW1_2, SW1_3, SW1_4で設定します。Serial mode時はDIF2-0 bitを設定して下さい。

<table>
<thead>
<tr>
<th>Mode</th>
<th>DIF2 pin (SW1_4)</th>
<th>DIF1 pin (SW1_3)</th>
<th>DIF0 pin (SW1_2)</th>
<th>DAUX</th>
<th>SDTO</th>
<th>LRCK</th>
<th>BICK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIF2 bit</td>
<td>DIF1 bit</td>
<td>DIF0 bit</td>
<td></td>
<td></td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>16bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>24bit, Left justified</td>
<td>18bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>20bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24bit, Left justified</td>
<td>24bit, Right justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>24bit, Left justified</td>
<td>H/L</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>24bit, I'S</td>
<td>24bit, I'S</td>
<td>L/H</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>24bit, Left justified</td>
<td>24bit, Left justified</td>
<td>H/L</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>24bit, I'S</td>
<td>24bit, I'S</td>
<td>L/H</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 6. Audio format

d. CM1, CM0の設定

PLLの動作モードの設定を行います。Parallel mode時はSW3_1およびJP18で、Serial mode時はCM1-0 bitにて設定を行います。

<table>
<thead>
<tr>
<th>CM1 pin (SW3_1)</th>
<th>CM0 pin (JP18)</th>
<th>(UNLOCK)</th>
<th>PLL</th>
<th>X’tal</th>
<th>Clock source</th>
<th>SDTO source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM1 bit</td>
<td>CM0 bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
<td>ON</td>
<td>ON (Note 3)</td>
<td>PLL(RX)</td>
<td>RX</td>
</tr>
<tr>
<td>0</td>
<td>1 (CM0=L)</td>
<td>-</td>
<td>OFF</td>
<td>ON</td>
<td>X’tal</td>
<td>DAUX</td>
</tr>
<tr>
<td>1</td>
<td>0 (CDTO/CM0=H)</td>
<td>-</td>
<td>ON</td>
<td>ON</td>
<td>PLL(RX)</td>
<td>RX</td>
</tr>
<tr>
<td>1</td>
<td>1 (CDTO/CM0=H)</td>
<td>-</td>
<td>ON</td>
<td>ON</td>
<td>X’tal</td>
<td>DAUX</td>
</tr>
</tbody>
</table>

ON:発振 (Power-up), OFF:発振停止 (Power-Down)

Note 3. X’talをリファレンスクロックに使用しない場合(XTL0,1=“1,1”)はOFFです。

Table 7. Clock Operation Mode Select

<KM100301>
(2) DITの評価
PORT2 (Serial Data I/O) – AK4118A – S/PDIF out (BNC)

MCLK, BICK, LRCKおよびDAUXは10ピンヘッダー(PORT2: DIR)を通して入出力します。

a. Bi-phase出力信号の設定

BNC(J4)コネクタから出力可能です。
TX0とTX1は同時にBNCを選択しないで下さい。
TX1から出力されるデータはOPS12-10 bitで選択してください。
TX0はRXのループバックモードのみ対応します。Parallel mode時はRX0固定で、Serial mode時はOPS02-00 bitにて設定を行います。

<table>
<thead>
<tr>
<th>出力信号</th>
<th>JP13 (TX0)</th>
<th>JP19 (TXP1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX0</td>
<td>BNC</td>
<td>Open</td>
</tr>
<tr>
<td>TX1</td>
<td>Open</td>
<td>BNC</td>
</tr>
</tbody>
</table>

Table 8. Bi-phase出力信号設定
b. クロック入出力の設定

使用する信号は、MCLK, LRCK, BICK, DAUXです。PORT2から入出力される信号レベルは3.3Vです。

![PORT2のピン配置](image)

Figure 3. PORT2のピン配置

<table>
<thead>
<tr>
<th>Clock</th>
<th>PORT</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCLK</td>
<td>PORT2</td>
<td>OUT</td>
</tr>
<tr>
<td>BICK</td>
<td>PORT2</td>
<td>IN / OUT</td>
</tr>
<tr>
<td>LRCK</td>
<td>PORT2</td>
<td>IN / OUT</td>
</tr>
<tr>
<td>DAUX</td>
<td>PORT2</td>
<td>IN</td>
</tr>
</tbody>
</table>

Table 9. Clockの入出力

b-1. MCKO1/MCKO2

詳細はTable 3, Table 4を参照して下さい。

b-2. BICK, LRCKの入出力に設定

詳細はTable 5を参照して下さい。

c. オーディオフォーマット

詳細はTable 6を参照して下さい。

d. CM1, CM0の設定

詳細はTable 7を参照して下さい。
シークレットコントロール

AKD4118A-AはIBM-AT互換機のプリンタポート（パラレルポート）を通してコントロール可能です。同梱の10線フラットケーブルでPORT6(uP-I/F)とPCを接続して下さい。コネクタの向きに注意して下さい。コネクタの1ピンには印が付いています。PORT6のピン配置はFigure 4のようになっています。

<table>
<thead>
<tr>
<th>モード</th>
<th>SW1_5</th>
<th>JP18</th>
</tr>
</thead>
<tbody>
<tr>
<td>4線式</td>
<td>L</td>
<td>DTO/COM0="H"をShort</td>
</tr>
<tr>
<td>IIC</td>
<td>H</td>
<td>SDAをShort CM0="L"をShort (Note 4)</td>
</tr>
</tbody>
</table>

Table 10. Parallel mode, Serial modeの設定

Note 4. IICモード時、chip addressは“01”固定です。

コントロールソフトウェアは本評価ボードに同梱されています。ソフトウェア操作手順は評価ボードマニュアルに含まれます。

Figure 4. PORT6ピン配置
トグルスイッチの機能

<table>
<thead>
<tr>
<th>SW2</th>
<th>PDN</th>
<th>AK4118Aのリセット。動作中は“H”に倒します。電源投入後、必ず一度“L”にしてリセットを行って下さい。</th>
</tr>
</thead>
</table>

LEDの表示

<table>
<thead>
<tr>
<th>LE1</th>
<th>INT0</th>
<th>INT0ピンが“H”の時に点灯します。</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE2</td>
<td>INT1</td>
<td>INT1ピンが“H”の時に点灯します。</td>
</tr>
</tbody>
</table>

DIPスイッチ(SW1)設定 : -off- 側が”L”です。

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Name</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPS0</td>
<td>IPS0ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>DIF0</td>
<td>DIF0ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>DIF1</td>
<td>DIF1ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>DIF2</td>
<td>DIF2ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>IPS1/IIC</td>
<td>IPS1ピンの設定（パラレルモード時） IICピンの設定（シリアルモード時） “L”: 4線式シリアルコントロール, “H”: IIC</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>P/SN</td>
<td>P/SNピンの設定。 “L”: シリアルモード、“H”: パラレルモード</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>TEST</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
<tr>
<td>8</td>
<td>ACKS</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
</tbody>
</table>

DIPスイッチ(SW3)設定 : -off- 側が”L”です。

<table>
<thead>
<tr>
<th>No.</th>
<th>Switch Name</th>
<th>Function</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CM1</td>
<td>CM1ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>OCKS1</td>
<td>OCKS1ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>OCKS0</td>
<td>OCKS0ピンの設定（パラレルモード時）</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>PSEL</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>XTL0</td>
<td>Table 11参照</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>XTL1</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>DIR_I/O</td>
<td>PORT2のBICK, LRCKの伝送方向入力切り替え設定。 “L”: PORT2から入力する場合, “H”: PORT2から出力する場合</td>
<td>ON</td>
</tr>
<tr>
<td>8</td>
<td>DIT_I/O</td>
<td>Don’t care</td>
<td>OFF</td>
</tr>
</tbody>
</table>

XTL1_0の設定

<table>
<thead>
<tr>
<th>SW3_6</th>
<th>SW3_5</th>
<th>X’tal Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTL1</td>
<td>XTL0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>11.2896MHz</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>12.288MHz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>24.576MHz</td>
</tr>
</tbody>
</table>

Table 11. XTL1_0の設定

<KM100301>
ジャンパピン設定

<table>
<thead>
<tr>
<th>No.</th>
<th>Jumper Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D3V/VD</td>
<td>Digital Logicの電源選択。

D3V : +3.3Vを供給< Default >
V D : +5Vを供給。</td>
</tr>
<tr>
<td>2</td>
<td>RXP0</td>
<td>RX0への入力回路の選択。

O PT : 未使用。
X LR : 未使用。
B NC : BNCコネクタを使用。< Default ></td>
</tr>
<tr>
<td>4,5,6</td>
<td>RX1-3</td>
<td>RX1-3の入力回路選択。
使用する入力のみ Short して下さい。</td>
</tr>
<tr>
<td>7,8,9,10</td>
<td>RX4-7</td>
<td>RX4-7のシリアル/パラレルモード時の入力切り替え。

RX4-7 : シリアルモード時。< Default >
使用する入力のみ Short して下さい。
DIF2-0.IPS0 : パラレルモード時。</td>
</tr>
<tr>
<td>12</td>
<td>DIR MCLK</td>
<td>PORT2(DIR)へのマスタクロックの選択。

MCKO1 : AK4118AのMCKO1を選択。< Default >
MCKO2 : AK4118AのMCKO2を選択。</td>
</tr>
<tr>
<td>13</td>
<td>TX0</td>
<td>TX0の出力回路選択。

O PT : 未使用。
B NC : BNCコネクタ出力。
Open : TX1を使用する場合は選択して下さい。< Default ></td>
</tr>
<tr>
<td>18</td>
<td>SDA/CDTO</td>
<td>SDA/CDTOの回路の選択。

4 wire serial < Default >
IIC JP18 SDA/CDTO
S DA/ CD T O</td>
</tr>
<tr>
<td>19</td>
<td>TXP1</td>
<td>TXP1への入力回路の選択。

O PT : 未使用。
X LR : 未使用。
B NC : BNCコネクタを使用。< Default >
Open : TX0を使用する場合は選択して下さい。</td>
</tr>
</tbody>
</table>
コントロールソフトマニュアル

■ 評価ボードとコントロールソフトの設定

1. AKD4118A-Aを前項参照の上、適宜、設定して下さい。

2. IBM-AT互換機とAKD4118A-Aを同梱の10線フラットケーブルで接続して下さい。10ピンヘッダーの向きに注意して下さい。（Windows 2000/XP上でコントロールソフトを動作させる場合、同梱のドライバをインストールして下さい。インストール方法については“AKMデバイスコントロールソフトウェア ドライバインストールマニュアル”を併せて下さい。Windows95/98/ME上で動作させる場合はドライバのインストールは不要です。尚、Windows NT上ではコントロールソフトは動作しません。）

4. CD-ROMドライブにアクセスして、“akd4118a-a.exe”をダブルクリックし、コントロールプログラムを立ち上げて下さい。

5. 後は下記を参照して評価して下さい。

■ 操作手順

下記の手順を守って下さい。

1. 上記に従って、コントロールプログラムを立ち上げて下さい。
2. Write defaultボタンをクリックして下さい。
3. 後は適宜、ダイアログを立ち上げ、データを入力してAK4118Aを評価して下さい。

■ 各ボタンの説明

1. [Port Reset] : USB I/Fボード接続時に使用します。
2. [Write default] : AK4118Aのレジスタを初期設定にします。
3. [All Write] : 現在表示されているレジスタ値を全て書き込みます。
4. [Read All] : AK4118Aの全てのレジスタを読み出します。
5. [Function1] : キーボード操作による書き込みダイアログを立ち上げます。
6. [F3] : シーケンス実行ダイアログを立ち上げます。
7. [SAVE] : 現在のレジスタ設定値をファイルに保存します。
8. [OPEN] : 保存してあるレジスタ値を読み込みます。
9. [Write] : 各レジスタに対応したマウス操作によるデータ書き込みダイアログを立ち上げます。
10. [Read] : 各レジスタに対応したデータを読み込みます。
各ダイアログの説明

1. [Function1ダイアログ]：キーボード操作によるデータ書き込みダイアログ
 - Addressボックス： データを書き込むアドレスを16進数2桁で入力します。
 - Dataボックス： データを16進数2桁で入力します。
 - 入力した値をAK4118Aに書き込む場合は“OK”ボタンを、書き込まない場合は“Cancel”ボタンを押して下さい。

2. [Writeダイアログ]： マウス操作によるデータ書き込みダイアログ
 - 各レジスタに対応したダイアログがあります。
 - 各レジスタに対応したWriteボタンをクリックし、ダイアログを立ち上げます。チェックボックスをチェック（✓点がチェックした印です）すると、データは“H”または“1”になり、チェックしなければデータは“L”または“0”になります。
 - 入力した値をAK4118Aに書き込む場合は“OK”ボタンを、書き込まない場合は“Cancel”ボタンを押して下さい。

データの表示

入力されたデータはレジスタマップに表示されます。赤字は“H”または“1”を表し、青字は“L”または“0”を表します。ブランク部分はデータシートで定義されていない部分です。

操作上の注意

Function1ダイアログを立ち上げたら、必ず全てのボックスにデータを入力して下さい。データシートで許されていないデータやアドレスを入力した場合、または、データの入力が途中の場合で“OK”ボタンをクリックした場合は、警告ダイアログが表示されますので、再度、ダイアログを立ち上げて、データを入力し直して下さい。“Cancel”ボタンをクリックした場合及び、チェックボックスの場合はこの限りではありません。
改定履歴

<table>
<thead>
<tr>
<th>Date (yy/mm/dd)</th>
<th>Manual Revision</th>
<th>Board Revision</th>
<th>Reason</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/08/05</td>
<td>KM100300</td>
<td>0</td>
<td>初版</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17/05/18</td>
<td>KM100301</td>
<td>1</td>
<td>変更</td>
<td>1, 10, 14</td>
<td>回路図変更：PORT1, PORT4: “実装” ⇒ “未実装”\ブロック図変更。ジャンパ設定変更。</td>
</tr>
</tbody>
</table>

<KM100301>
重要な注意事項

0. 本書に記載された弊社製品（以下、「本製品」といいます。）、および、本製品の仕様につきましては、本製品改善のために予告なく変更することがあります。従いまして、ご使用を検討の際には、本書に掲載した情報が最新のものであることを弊社営業担当、あるいは弊社特約店営業担当にご確認ください。

1. 本書に記載された情報は、本製品の動作例、応用例を説明するものであり、その使用に際して弊社および第三者の知的財産権その他の権利に対する保証または実施権の許諾を行うものではありません。お客様の機器設計において当該情報を使用される場合は、お客様の責任において行って頂くとともに、当該情報の使用に起因してお客様または第三者に生じた損害に対して、弊社はその責任を負うものではありません。

2. 本製品は、医療機器、航空宇宙用機器、輸送機器、交通信号機器、原子力制御用機器、各種安全装置など、その装置・機器の故障や動作不良が、直接または間接を問わず、生命、身体、財産等へ重大な損害を及ぼすことが通常予想されるような極めて高い信頼性を要求される用途に使用されることを意図しておらず、保証もされていません。そのため、別途弊社より書面で許諾された場合を除き、これらの用途に本製品を使用しないでください。万が一、これらの用途に本製品を使用された場合、弊社は、当該使用から生ずる損害等の責任を一切負うものではありません。

3. 弊社は品質、信頼性の向上に努めておりますが、電子製品は一般に誤作動または故障する場合があります。本製品をご使用頂く場合は、本製品の誤作動や故障により、生命、身体、財産等が侵害されることのないよう、お客様の責任において、本製品を搭載されるお客様の製品に必要な安全設計を行うことをお願いします。

4. 本製品および本書記載の技術情報を、大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目的で使用しないでください。本製品および本書記載の技術情報を輸出または非居住者に提供する場合は、「外国為替及び外国貿易法」その他の適用する輸出関連法令を遵守し、必要な手続を行ってください。本製品および本書記載の技術情報を国内外の法令および規則により製造、使用、販売を禁止されている機器・システムに使用しないでください。

5. 本製品の環境適合性等の詳細につきましては、製品個別に必ず弊社営業担当までお問合せください。本製品のご使用に際しては、特定の物質の含有・使用を規制するRoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようにご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、弊社は一切の責任を負いかねます。

6. お客様の転売等によりこの注意事項に反して本製品が使用され、その使用から損害等が生じた場合はお客様にて当該損害をご負担または補償して頂きますのでご了承ください。

7. 本書の全部または一部を、弊社の事前の書面による承諾なしに、転載または複製することを禁じます。
AKD4118A-A Layer2 Pattern Layout