1. General Description

The AP1151 is a low dropout linear regulator with On/Off control, which can supply 200mA load current. The output voltage can be set between 1.3 to 13.5V by an external resistor, and the output capacitor is available to use a small 0.22uF ceramic capacitor.

The AP1151 has a built-in over-current protection and thermal shutdown protection circuit, and is possible to provide two types of package, the AP1151ADS is the SOT23-5 package and the AP1151AEU is the PLP1822-6 package with Heat Sink pad.

2. Features

- Operating Temperature Range: -40 to 85°C
- Operating Voltage Range: 2.1 to 14.0V
- Output Current: 200mA
- Settable range of output voltage: 1.3 to 13.5V
- Reference voltage accuracy: 1.27V ± 20mV
- Dropout Voltage: 120mV at \( I_{\text{OUT}} = 100\text{mA} \)
- Ripple Rejection: 80dB at 1kHz
- Available very low noise application
- Available to use a small ceramic capacitor
- On/Off control (High active)
- Built-in Short circuit protection, thermal shutdown

- Package
  - AP1151ADS : SOT23-6
  - AP1151AEU : PLP1822-6 (with Ex-posed Pad)

3. Applications

- RF Power Supplies
- Low Noise Image Sensor Unit
- High Speed/High Precision A-D, D-A, Amplifier
- Precision Power Supplies
- Post Regulator for Switching Supplies

PLL, VCO, Mixer, LNA
Digital Still Camera
Audio Equipment
Medical Equipment
Instrumentation
Car Infotainment
# 4. Table of Contents

1. General Description .............................................................................................................. 1
2. Features .................................................................................................................................. 1
3. Applications .............................................................................................................................. 1
4. Table of Contents ..................................................................................................................... 2
5. Block Diagram .......................................................................................................................... 3
6. Ordering Guide ......................................................................................................................... 3
7. Pin Configuration and Functions ............................................................................................ 4
   - Pin Configurations .................................................................................................................. 4
   - Functions ............................................................................................................................... 4
8. Absolute Maximum Ratings ................................................................................................. 6
9. Recommended Operating Conditions ..................................................................................... 6
10. Electrical Characteristics ...................................................................................................... 7
    - Electrical Characteristics of $T_a=T_j=25^\circ C$ .................................................................... 7
    - Electrical Characteristics of $T_a=-40^\circ C$ to $85^\circ C$ ...................................................... 8
11. Description ............................................................................................................................. 9
    11.1 DC Characteristics .......................................................................................................... 9
    11.2 DC Temperature Characteristics ...................................................................................... 11
    11.3 AC Characteristics ........................................................................................................... 13
    11.4 About stable operation ..................................................................................................... 20
    11.5 On/Off Control .................................................................................................................. 21
    11.6 Noise Pass Terminal ......................................................................................................... 21
    11.7 Notes on output terminal ($V_{OUT}$) to GND short-circuit evaluation .............................. 21
    11.8 Thermal Resistance and Power Dissipation .................................................................... 22
12. Definition of term .................................................................................................................. 24
    - Protections .......................................................................................................................... 24
13. Recommended External Circuit ............................................................................................ 25
    - Recommended External Circuit ........................................................................................... 25
14. Package .................................................................................................................................. 27
    - Outline Dimensions .............................................................................................................. 27
      - SOT23-6 ............................................................................................................................... 27
      - PLP1822-6 .......................................................................................................................... 27
15. Revise History ....................................................................................................................... 28

IMPORTANT NOTICE .............................................................................................................. 29
5. Block Diagram

Figure 1. Block Diagram

6. Ordering Guide

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1151ADS</td>
<td>Ta = -40 to 85°C</td>
<td>SOT23-6</td>
</tr>
<tr>
<td>AP1151AEU</td>
<td>Ta = -40 to 85°C</td>
<td>PLP1822-6</td>
</tr>
</tbody>
</table>
## Pin Configuration and Functions

### Pin Configurations

<table>
<thead>
<tr>
<th>SOT23-6</th>
<th>PLP1822-6</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Pin Configuration SOT23-6" /></td>
<td><img src="image2" alt="Pin Configuration PLP1822-6" /></td>
</tr>
</tbody>
</table>

(Top View)

### Functions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>SOT23-6</th>
<th>PLP1822-6</th>
<th>Pin Description</th>
<th>Internal Equivalent Circuit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>V\text{OUT}</td>
<td><img src="image3" alt="Internal Circuit" /></td>
<td>Output Terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The output voltage is decided by the following formulas. ( V\text{OUT} = V\text{FB} \times \frac{R1 + R2}{R1} )</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>FB</td>
<td><img src="image4" alt="Internal Circuit" /></td>
<td>Feedback Terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Connect a resistance R1 between GND, and a resistance R2 between V\text{OUT}.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>V\text{IN}</td>
<td><img src="image5" alt="Internal Circuit" /></td>
<td>Input Terminal</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>V\text{CONT}</td>
<td><img src="image6" alt="Internal Circuit" /></td>
<td>On/Off Control Terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>( V\text{CONT} &gt; 1.8V : \text{ON} ) ( V\text{CONT} &lt; 0.35V : \text{OFF} )</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>GND</td>
<td><img src="image7" alt="Internal Circuit" /></td>
<td>Ground Terminal</td>
</tr>
</tbody>
</table>

The pull-down resistor (500k\(\Omega\)) is built-in.
<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Description</th>
<th>Internal Equivalent Circuit</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6       | 1               | NP                          | Noise Bypass Terminal  
Connect a bypass capacitor between GND. |
| -       | Exposed Pad     | -                           | Ground Terminal  
Heat dissipation pad  
Exposed Pad must be connected to GND. |
8. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>$V_{CC(\text{MAX})}$</td>
<td>-0.4</td>
<td>16</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reverse Bias Voltage</td>
<td>$V_{\text{REV}(\text{MAX})}$</td>
<td>-0.4</td>
<td>6</td>
<td>V</td>
<td>$V_{\text{OUT(TYP)}} \leq 2.0$ V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.4</td>
<td>14.5</td>
<td>V</td>
<td>$2.0 \leq V_{\text{OUT(TYP)}}$</td>
</tr>
<tr>
<td>FB Terminal Voltage</td>
<td>$V_{\text{FB(\text{MAX})}}$</td>
<td>-0.4</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>NP Terminal Voltage</td>
<td>$V_{\text{NP(\text{MAX})}}$</td>
<td>-0.4</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{\text{CONT}}$ Terminal Voltage</td>
<td>$V_{\text{CONT(\text{MAX})}}$</td>
<td>-0.4</td>
<td>16</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>$T_{j}$</td>
<td></td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>$T_{\text{STG}}$</td>
<td>-55</td>
<td>150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>SOT23-6</td>
<td>$P_D$</td>
<td>500</td>
<td>mW</td>
<td>(Note 1)</td>
</tr>
<tr>
<td></td>
<td>PLP1822-6</td>
<td></td>
<td>1500</td>
<td>mW</td>
<td>(Note 1)</td>
</tr>
</tbody>
</table>

Note 1. A 4-layer JEDEC51-3 compliant board is used.  
If the temperature exceeds 25°C, be sure to derate at Figure 2.  
SOT23-6 : $\theta_{JA} = 250^\circ C$ /W (A 2-layer board is used.)  
PLP1822-6 : $\theta_{JA} = 83^\circ C$ /W (A 4-layer JEDEC51-3 compliant board is used.)

**WARNING:** The maximum ratings are the absolute limitation values with the possibility of the IC breakage. When the operation exceeds this standard quality cannot be guaranteed.

![Figure 2. Maximum Power Dissipation](image)

9. Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>$T_a$</td>
<td>-40</td>
<td>-</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage Range</td>
<td>$V_{\text{OP}}$</td>
<td>2.1</td>
<td>-</td>
<td>14</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>$V_{\text{OUT}}$</td>
<td>1.3</td>
<td>-</td>
<td>13.5</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
### 10. Electrical Characteristics

**Electrical Characteristics of Ta=Tj=25°C**

The parameters with min or max values will be guaranteed at Ta=Tj=25°C.

(V\textsubscript{IN}=4.0V, R\textsubscript{1}=51k\Omega, R\textsubscript{2}=68k\Omega, V\textsubscript{CONT}=1.8V, Ta=Tj=25°C, unless otherwise specified.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB Terminal Voltage</td>
<td>V\textsubscript{FB}</td>
<td>I\textsubscript{OUT}=5mA</td>
<td>1.250</td>
<td>1.270</td>
<td>1.290</td>
<td>V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>LinReg</td>
<td>ΔV\textsubscript{IN}=5V</td>
<td>-</td>
<td>0.0</td>
<td>5.0</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation (Note 2)</td>
<td>LoaReg</td>
<td>I\textsubscript{OUT}=5mA~100mA</td>
<td>-</td>
<td>11</td>
<td>27</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I\textsubscript{OUT}=5mA~200mA</td>
<td>-</td>
<td>26</td>
<td>61</td>
<td>mV</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>V\textsubscript{DROP}</td>
<td>I\textsubscript{OUT}=50mA</td>
<td>-</td>
<td>80</td>
<td>140</td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Output Current (Note 3)</td>
<td>I\textsubscript{OUT(MAX)}</td>
<td>When V\textsubscript{OUT} drops 0.3V</td>
<td>240</td>
<td>320</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I\textsubscript{Q}</td>
<td>I\textsubscript{OUT}=0mA</td>
<td>-</td>
<td>78</td>
<td>125</td>
<td>μA</td>
</tr>
<tr>
<td>Standby Current</td>
<td>I\textsubscript{STANDBY}</td>
<td>V\textsubscript{CONT}=0V</td>
<td>-</td>
<td>0.0</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>Ground Terminal Current</td>
<td>I\textsubscript{GND}</td>
<td>I\textsubscript{OUT}=50mA</td>
<td>-</td>
<td>1.0</td>
<td>1.8</td>
<td>mA</td>
</tr>
<tr>
<td>Control Terminal (V\textsubscript{CONT})</td>
<td>I\textsubscript{CONT}</td>
<td>V\textsubscript{CONT}=1.8V</td>
<td>-</td>
<td>5.0</td>
<td>15.0</td>
<td>μA</td>
</tr>
<tr>
<td>V\textsubscript{CONT} Terminal Voltage</td>
<td>V\textsubscript{CONT}</td>
<td>V\textsubscript{OUT} ON state</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V\textsubscript{OUT} OFF state</td>
<td>-</td>
<td>-</td>
<td>0.35</td>
<td>V</td>
</tr>
</tbody>
</table>

**Reference Value**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Unit</th>
<th>ppm /°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP Terminal Voltage</td>
<td>V\textsubscript{NP}</td>
<td>-</td>
<td>1.27</td>
<td>-</td>
</tr>
<tr>
<td>Output Voltage / Temp.</td>
<td>V\textsubscript{Ta}</td>
<td>-</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I\textsubscript{SHORT}</td>
<td>-</td>
<td>360</td>
<td>-</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V\textsubscript{NOISE}</td>
<td>C\textsubscript{L}=1.0\mu F, C\textsubscript{NP}=0.01\mu F, C\textsubscript{FB}=100pF, I\textsubscript{OUT}=30mA</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>R.R</td>
<td>C\textsubscript{L}=1.0\mu F, C\textsubscript{NP}=0.01\mu F, C\textsubscript{FB}=100pF, I\textsubscript{OUT}=10mA</td>
<td>f=1kHz</td>
<td>-</td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>C\textsubscript{L}=1.0\mu F, C\textsubscript{NP}=0.001\mu F, C\textsubscript{FB}=100pF</td>
<td>V\textsubscript{CONT} : Pulse Wave (10Hz)</td>
<td>-</td>
</tr>
</tbody>
</table>

**Note 2.** Load Regulation changes with output voltage. The value mentioned above is guaranteed with the condition at R\textsubscript{1}=51k\Omega, R\textsubscript{2}=68k\Omega (set at V\textsubscript{OUT(TYP)}=3.0V).

**Note 3.** The maximum output current is limited by power dissipation.
**Electrical Characteristics of Ta=-40°C to 85°C**

The parameters with min or max values will be guaranteed at Ta=-40°C to 85°C.

(V_{IN}=4.0V, R1=51kΩ, R2=68kΩ, V_{CONT}=1.8V, Ta= -40 ~ 85°C, unless otherwise specified.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB pin Voltage</td>
<td>V_{FB}</td>
<td>I_{OUT}=5mA</td>
<td>1.240</td>
<td>1.270</td>
<td>1.300</td>
<td>V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>LinReg</td>
<td>ΔV_{IN}=5V</td>
<td>-</td>
<td>0.0</td>
<td>8.0</td>
<td>mV</td>
</tr>
<tr>
<td>Load Regulation (Note 4)</td>
<td>LoaReg</td>
<td>I_{OUT}=5mA~100mA</td>
<td>-</td>
<td>11</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{OUT}=5mA~200mA</td>
<td>-</td>
<td>26</td>
<td>80</td>
<td>mV</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>V_{DROP}</td>
<td>I_{OUT}=50mA</td>
<td>-</td>
<td>80</td>
<td>180</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{OUT}=100mA</td>
<td>-</td>
<td>120</td>
<td>270</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{OUT}=200mA</td>
<td>-</td>
<td>200</td>
<td>390</td>
<td>mV</td>
</tr>
<tr>
<td>Maximum Output Current (Note 5)</td>
<td>I_{OUT(MAX)}</td>
<td>When V_{OUT} drops 0.3V</td>
<td>220</td>
<td>320</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I_{Q}</td>
<td>I_{OUT}=0mA</td>
<td>-</td>
<td>78</td>
<td>150</td>
<td>μA</td>
</tr>
<tr>
<td>Standby Current</td>
<td>I_{STANDBY}</td>
<td>V_{CONT}=0V</td>
<td>-</td>
<td>0.0</td>
<td>0.5</td>
<td>μA</td>
</tr>
<tr>
<td>GND Pin Current</td>
<td>I_{GND}</td>
<td>I_{OUT}=50mA</td>
<td>-</td>
<td>1.0</td>
<td>2.2</td>
<td>mA</td>
</tr>
<tr>
<td>Control Terminal (V_{CONT})</td>
<td></td>
<td>V_{CONT}=1.8V</td>
<td>-</td>
<td>5.0</td>
<td>15.0</td>
<td>μA</td>
</tr>
<tr>
<td>VCONT Terminal Voltage</td>
<td>V_{CONT}</td>
<td>VOUT ON state</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOUT OFF state</td>
<td>-</td>
<td>-</td>
<td>0.35</td>
<td>V</td>
</tr>
<tr>
<td>Reference Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP Terminal Voltage</td>
<td>V_{NP}</td>
<td></td>
<td>-</td>
<td>1.27</td>
<td>-</td>
<td>ppm /°C</td>
</tr>
<tr>
<td>Output Voltage / Temp.</td>
<td>V_{O}/Ta</td>
<td></td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>ppm /°C</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I_{SHORT}</td>
<td></td>
<td>-</td>
<td>360</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Output Noise Voltage</td>
<td>V_{NOISE}</td>
<td>C_{L}=1.0μF, C_{NP}=0.01μF,C_{FB}=100pF, I_{OUT}=30mA</td>
<td>-</td>
<td>34</td>
<td>-</td>
<td>μVrms</td>
</tr>
<tr>
<td>Ripple Rejection</td>
<td>R.R</td>
<td>C_{L}=1.0μF, C_{NP}=0.01μF,C_{FB}=100pF, I_{OUT}=10mA,f=1kHz</td>
<td>-</td>
<td>80</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>C_{L}=1.0μF, C_{NP}=0.001μF,C_{FB}=100pF,V_{CONT} : Pulse Wave (100Hz)V_{CONT} ON → V_{OUT}×95% point</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>μs</td>
</tr>
</tbody>
</table>

Note 4. Load Regulation changes with output voltage. The value mentioned above is guaranteed with the condition at R1=51kΩ, R2=68kΩ (set at V_{OUT(TYP)}=3.0V).

Note 5. The maximum output current is limited by power dissipation.
11. Description

11.1 DC Characteristics

- Line Regulation

- Load Regulation ($V_{\text{OUT(TYP)}} = 3.0\text{V}$)

- Regulation Point ($2.1\text{V} \leq V_{\text{OUT(TYP)}}$)

- Dropout Voltage vs Output Current

- Output Short-Circuit Current

- Reverse Bias Current
- CONT Terminal Current and On/Off Point

- Quiescent Current vs Output Current

- Standby Current (V_{CONT}=0V)
11.2 DC Temperature Characteristics

- **Maximum Output Current**

- **Quiescent Current**

- **Dropout Voltage**

- **CONT Terminal Current**

- **CONT Terminal On/Off point**

- **Short Circuit Current**
### V\text{REF} (V\text{REF(TYP)}=1.27V)

![Graph showing VREF vs Ta°C]

### V\text{OUT} (V\text{OUT(TYP)}=3.0V)

![Graph showing VOUT vs Ta°C]

### Line Regulation (V\text{OUT(TYP)}=3.0V, Ta=Tj)

![Graph showing Line Regulation vs Ta°C]

### Load Regulation

![Graph showing Load Regulation vs Ta°C]
11.3 AC Characteristics

- Ripple Rejection

The ripple rejection characteristic depends on the characteristic and the capacity value of the capacitor connected with the output side. The ripple rejection characteristic of 50kHz or more changes greatly in the capacitor on the output side and PCB pattern. Please confirm stability if necessary while operated.

- **C_L=1.0μF**: Ceramic (C), Tantalum (T)

- **C_L=0.22μF, 1.0μF, 2.2μF, 10μF**: Ceramic

- **C_NP=0.001μF, 0.01μF, 0.1μF**

![Ripple Rejection Graph](image1)

![Ripple Rejection Graph](image2)

![Test Conditions](image3)
**R.R vs I\text{OUT}**: Frequency=1kHz

![Graph showing R.R vs I\text{OUT}](image)

**C\text{FB} = 100pF, 1000pF, 0.01\mu F, 0.1\mu F**

\[ V_{\text{OUT(TYP)}} = 1.3V \]

**V\text{OUT(TYP)} = 1.3V**

![Graph showing V\text{OUT(TYP)} = 1.3V](image)

**R.R vs Low V\text{IN}**: Frequency=1kHz

![Graph showing R.R vs Low V\text{IN}](image)

**Test conditions**

\[ V_{\text{OUT(TYP)}} = 1.3V: R1=120k\Omega , R2=2.8k\Omega \]

\[ 3.0V: R1=120k\Omega , R2=163.5k\Omega \]

\[ 5.0V: R1=120k\Omega , R2=352k\Omega \]

\[ 8.0V: R1=75k\Omega , R2=397k\Omega \]

\[ 13.0V: R1=51k\Omega , R2=470k\Omega \]

\[ C\text{FB} = 100pF, 1000pF, 0.01\mu F, 0.1\mu F \]

\[ V_{\text{OUT(TYP)}} = 5.0V \]

![Graph showing V\text{OUT(TYP)} = 5.0V](image)
Output Noise

It is more effective if it increases the CNP than to increase the CL is the case that require low noise. CNP capacity is recommended 0.01µF to 0.1µF. Amount of noise will be a lot higher output voltage products.

- **V<sub>OUT</sub> vs Noise**
  - R1=51kΩ, R2=1.2kΩ ~ 470k

- **C<sub>NP</sub> vs Noise**

- **I<sub>OUT</sub> vs Noise**
**C\text{NP}** vs Noise (C\text{L}: Ceramic)
\( C_{FB}=100\text{pF}, 1000\text{pF}, 0.01\mu\text{F}, 0.1\mu\text{F} \)

**I_{\text{OUT}}** vs Noise (C\text{L}: Ceramic)
\( C_{FB}=100\text{pF}, 1000\text{pF}, 0.01\mu\text{F}, 0.1\mu\text{F} \)
- On/Off Transient

The rise time of the IC will be slow and $C_L$, $C_{NP}$ is large. Rise time is dependent $C_L$, on the $C_{NP}$, fall time is dependent on the $C_L$.

### Test conditions

$V_{OUT(TYP)} = 3.0V : R2 = 163.5\,k\Omega$

$V_{cont}=0V\rightarrow 2V (f=100Hz)$

$V_{out}=1.0V$

$C_L = 1.0\mu F, 2.2\mu F, 4.7\mu F$

$C_{NP} = 0.001\mu F, 0.01\mu F, 0.1\mu F$

$C_{in}=1.0\mu F$
Load Transient
IC can improve the load change to keep some flow of load current. When there is a fast large current change, please increase the load side capacitor. It can reduce the voltage fluctuation.

Test conditions

\[ V_{OUT(TYP)} = 3.0V : R2 = 163.5k\Omega \]

- \( I_{OUT} = 0 \rightarrow 30mA, 0 \rightarrow 100mA, 0 \rightarrow 200mA \)

- \( I_{OUT} = 30 \rightarrow 0mA, 100 \rightarrow 0mA, 200 \rightarrow 0mA \)

- \( I_{OUT} = 5 \rightarrow 30mA, 5 \rightarrow 100mA, 5 \rightarrow 200mA \)

- \( I_{OUT} = 30 \rightarrow 5mA, 100 \rightarrow 5mA, 200 \rightarrow 5mA \)
- Line Transient

- Test conditions

\[
\begin{align*}
V_{\text{in}} &= V_{\text{out}} + 1.0\, \text{V} \text{ or } +2.0\, \text{V} \\
R_1 &= 130\, \text{k}\Omega \\
R_2 &= 120\, \text{k}\Omega \\
C_{\text{fb}} &= 100\, \text{pF} \\
C_{\text{np}} &= 0.001\, \text{F}, 0.01\, \text{F}, 0.1\, \text{F} \\
C_L &= 1.0\, \text{F}, 2.2\, \text{F}, 4.7\, \text{F} \\
C_{\text{out}} &= 1.0\, \text{F}
\end{align*}
\]

\[
V_{\text{OUT(TYP)}} = 3.0\, \text{V} : R_2 = 163.5\, \text{k}\Omega
\]
11.4 About stable operation

AP1151 is required for input and output capacitors in order to maintain the regulator's loop stability.

**Input Capacitor (C_IN)**

The input capacitor is necessary when the battery is discharged, the power supply impedance increases, or the line distance to the power supply is long. This capacitor might be necessary on each individual IC even if two or more regulator ICs are used. It is not possible to determine this indiscriminately. Please confirm the stability while mounted.

The recommended value is $C_{IN} = 1.0 \mu F$.

**Output Capacitor (C_L)**

Operation is stabilized by $0.22 \mu F$ ($V_{OUT} \geq 1.3V$) the output side capacitor ($C_L$). Without taking into account the ESR if $C_L$ is equal to or greater than $0.22 \mu F$ in the entire operating temperature range, it can also be used tantalum capacitor not only the ceramic capacitor.

However, since there are variations in the capacity component, can only capacity, please use larger. And large capacitance value as the output noise and ripple noise is reduced small, furthermore, also improves the response to further output side load fluctuation. The IC does not damage by increasing the capacity.

In addition, since the low output voltage product is easier to be oscillation, please use or tantalum capacitor to increase the $C_L$ capacity. More of the tantalum capacitor can be obtained the same stability with a smaller value. This serves as the ESR of the tantalum capacitor damping resistance, are considered IC to a more stable operation.

The recommended value is $C_{IN} = 1.0 \mu F$.

Figure 3 means that IC stable operation with a ceramic capacitor of $0.1 \mu F$ except for the small current region. In the low voltage and low current region does not stable operation is necessary to increase the capacity. Please select the optimum output capacitor by using voltage and current used. The output side capacitor ($C_L$) is stable operating larger. (Stable operation area will spread). Please use only the large capacity can be.

![Figure 3. Stable operation area vs. voltage, current, and ESR](image)
Note 6. Capacitor product was used in the evaluation
Kyocera:CM05B104K10AB,CM05B224K10AB,CM105B104K16A,CM105B224K16A,CM21B225K10A

•Bias voltage and temperature characteristics of the ceramic capacitor
Generally, a ceramic capacitor has both a temperature characteristic and a voltage characteristic. Please consider both characteristics when selecting the part. The B curves are the recommend characteristics.

![Capacitance versus Voltage](image1)
![Capacitance versus Ambient Temperature](image2)

11.5 On/Off Control
It is recommended to turn the regulator off when the circuit following the regulator is non-operating. A design with little electric power loss can be implemented. We recommend the use of the on/off control of the regulator without using a high side switch to provide an output from the regulator. A highly accurate output voltage with low voltage drop is obtained. Because the control current is small, it is possible to control it directly by CMOS logic. The pull-down resistor (500kΩ) is built-in.

<table>
<thead>
<tr>
<th>Control terminal voltage (V_{\text{CONT}})</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{\text{CONT}} &gt; 1.8V</td>
<td>ON</td>
</tr>
<tr>
<td>V_{\text{CONT}} &lt; 0.35V</td>
<td>OFF</td>
</tr>
</tbody>
</table>

11.6 Noise Pass Terminal
The noise and the ripple rejection characteristics depend on the capacitance on the Np terminal. The ripple rejection characteristic of the low frequency region improves by increasing the capacitance of C_{NP}. A standard value is C_{NP}=0.001\,\mu F. Increase C_{NP} in a design with important output noise and ripple rejection requirements. The IC will not be damaged if the capacitor value is increased. The On/Off switching speed changes depending on the NP terminal capacitance. The switching speed slows when the capacitance is large.

11.7 Notes on output terminal (V_{\text{OUT}}) to GND short-circuit evaluation
The resonance phenomenon due to stick to the output terminal CL (C component) and the short-circuit line (L component), the output terminal will become a negative potential. Output terminal parasitic transistor operates in the IC enters the minus side, leads to the worst case burning for packages that latch-up phenomenon occurs in the IC (white smoke) or damage. The resonance phenomenon appears remarkably In the ESR value is small ceramic capacitors and the like of the capacitor. As a measure of this phenomenon, we can to reduce the resonance phenomenon to be short-circuited by connecting the short-circuit line and the series in more than 2Ω resistance. This allows you to prevent latch-up phenomenon in the IC.
In large tantalum and electrolytic capacitor of ESR, it generally influence of there resonance phenomenon ESR value is greater than or equal to 2Ω is reduced. Also, if a constraint or the like on your set can not be performed the measures as described above, please insert a schottky diode between GND terminal and the output terminal. This parasitic transistor in the internal IC will not work. A result, you can avoid the latch-up because the parasitic transistor does not work.

### 11.8 Thermal Resistance and Power Dissipation

**How to determine the thermal resistance when mounted on PCB**

The thermal resistance when mounted is expressed as follows:

\[
T_j = \theta_{JA} \times P_D + 25
\]

\(T_j\) of IC is set around 150°C. \(P_D\) is the value when the thermal sensor is activated. If the ambient temperature is 25°C, then:

\[
150 = \theta_{JA} \times P_D + 25
\]

\[
\theta_{JA} \times P_D = 125
\]

\[
\theta_{JA} = \frac{125}{P_D} \text{°C/W}
\]

**Simple method to calculate Power Dissipation**

Mount the IC on the print circuit board. \(P_D\) will be \(V_{IN} \times I_{IN}\) when the short circuit on the output side of the IC. The output terminal short-circuited with GND to measure gradually the input current gradually increase the input voltage. Increase gradually to 10V position the input voltage. Initial input current value is the maximum instantaneous output current value, but gradually decreased due to the temperature rise of the chip, it will eventually become a thermal equilibrium state (natural air cooling). This is calculated by using the input current value and the input voltage value when became constant.

\[
P_D (\text{mW}) = V_{in}(\text{V}) \times I_{in}(\text{mA})
\]

**Maximum available current at the maximum temperature**

Available at the time the highest operating temperature current, you can ask in the graph of **Figure 4**. Than DPD value obtained from the graph of **Figure 4**, the maximum available current at the time of the maximum temperature can be calculated by the following equation.

\[
I_{out} = \left\{D_P D \div \left(V_{in,MAX} - V_{out}\right)\right\}
\]
Procedure (When mounted on PCB.)
1. Find $P_D (V_{IN} \times I_{IN}$ when the output side is short-circuited).
2. Plot $P_D$ against 25°C.
3. Connect $P_D$ to the point corresponding to the 150°C with a straight line.
4. In design, take a vertical line from the maximum operating temperature (e.g., 75°C) to the derating curve.
5. Read off the value of $P_D$ against the point at which the vertical line intersects the derating curve. This is taken as the maximum power dissipation $DP_D$.
6. $DP_D = (V_{IN(MAX)} - V_{OUT}) \times I_{OUT}$ at 75°C

Figure 4. The simple method to calculate $PD$
### 12. Definition of term

#### Characteristics

Each characteristic will be measured in a short period not to be influenced by joint temperature (Tj).

- **Output Current (I\textsubscript{OUT})**
  Normal output current that can be used. And a range of overheat protection does not operation.

- **Maximum Output Current (I\textsubscript{OUT(MAX)})**
  The rated output current is specified under the condition where the output voltage drops 0.3V the value specified with I\textsubscript{OUT}=5mA. The input voltage is set to V\textsubscript{OUT(TYP)}+1V and the current is pulsed to minimize temperature effect.

- **Dropout Voltage (V\textsubscript{DROP})**
  The dropout voltage is the difference between the input voltage and the output voltage at which point the regulator starts to fall out of regulation. Below this value, the output voltage will fall as the input voltage is reduced. It is dependent upon the load current and the junction temperature.

- **Line Regulation (LinReg)**
  Line regulation is the ability of the regulator to maintain a constant output voltage as the input voltage changes. The line regulation is specified as the input voltage is changed from V\textsubscript{IN}=V\textsubscript{OUT(TYP)}+1V to V\textsubscript{OUT(TYP)}+6V. It is a pulse measurement to minimize temperature effect.

- **Load Regulation (LoaReg)**
  Load regulation is the ability of the regulator to maintain a constant output voltage as the load current changes. It is a pulsed measurement to minimize temperature effects with the input voltage set to V\textsubscript{IN}=V\textsubscript{OUT(TYP)}+1V. The load regulation is specified output current step conditions of 5mA to 100mA.

- **Ripple Rejection (R.R)**
  Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is specified with 200mVrms, 1kHz super-imposed on the input voltage, where V\textsubscript{IN}=V\textsubscript{OUT}+1.5V. Ripple rejection is the ratio of the ripple content of the output vs. input and is expressed in dB.

- **Standby Current (I\textsubscript{STANDBY})**
  Standby current is the current, which flows into the regulator when the output is turned off by the control function (V\textsubscript{CONT}=0V).

#### Protections

- **Over Current Protection**
  The over current sensor protects the device when there is excessive output current. It also protects the device if the output is accidentally connected to ground.

- **Thermal Shutdown Protection**
  When the power loss of the regulator there are many, it is the ability to limit such that does not exceed the allowable power consumption. Output and the chip temperature reaches about 150℃ is turned OFF. However, when the temperature of the chip is reduced, and the output is turned ON again.
13. Recommended External Circuit

Recommended External Circuit

<table>
<thead>
<tr>
<th>Parts</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>UNIT</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>1.0</td>
<td></td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>C_{L}</td>
<td>1.0</td>
<td></td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>C_{NP}</td>
<td>0.001</td>
<td></td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>C_{FB}</td>
<td>100</td>
<td></td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
<td>V_{OUT(TYP)}=3.0V設定時</td>
</tr>
<tr>
<td>R2</td>
<td>68</td>
<td></td>
<td></td>
<td>kΩ</td>
<td>V_{OUT(TYP)}=3.0V設定時</td>
</tr>
</tbody>
</table>

Note 7. The above table of values is the recommended example. Please apply the optimal value on the check prior to the time of your board.

The output voltage is determined by the following formula.

\[
V_{OUT(TYP)} = \frac{R_1 + R_2}{R_1} \times V_{FB} \left(1.27V\right)
\]

Please refer to 11.4 for more details. Resistance value of R2, be less than 510kΩ. In case of high output voltage, please adjust R1 value in order to make R2 value smaller than 510kΩ. FB terminal because impedance is high, making it susceptible to the influence of external noise and the like. By connecting the capacity C_{FB} between the V_{OUT} -FB terminal can reduce their impact, also it reduces output noise.

Figure 5. External connection circuit example

Table 2. Recommended external components example
Figure 6. Layout pattern example

1. Place the input capacitor \( C_{IN} \) as close as possible to the \( V_{IN} \) and GND.
2. Place the output capacitor \( C_L \) as close as possible to the \( V_{OUT} \) and GND.
3. Place the feedback resistor \( R_1, R_2 \) as close as possible to the FB terminal. When connecting the output voltage \( V_{OUT} \) and the feedback resistor \( R_2 \), please wiring from the vicinity of the + terminal output capacitor \( C_L \).
4. Place the FB bypass capacitor \( C_{FB} \) as close as possible to the \( V_{OUT} \) pin and the FB terminal.
5. PCB wiring, so as to strengthen the GND area.
6. PLP1822-6 of Exposed-Pad has become a shared with the ground of the IC. Please connect to the PCB ground always. Vias (heat dissipation hole) is an effective heat dissipation to the PCB of each layer.
14. Package

Outline Dimensions
- SOT23-6

Mark
Lot No.

Index

U00: Product code
(1) Year code (last 1 digit)
(2) Monthly code
(3) Management code

---

- PLP1822-6

Unit: mm

1151A

(2) YWWZZ

(3) (4) (5)

(1) 1pin Indication
(2) Market No. (XX: Output Voltage code)
(3) Year code (last 1 digit)
(4) Week code
(5) Management code
## 15. Revise History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/1/21</td>
<td>00</td>
<td>-</td>
<td>First edition</td>
</tr>
<tr>
<td>17/3/24</td>
<td>01</td>
<td>-</td>
<td>Completely revised as PLP1822-6 package is added</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.

2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.

3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.

4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.

7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.